The diet composition of bluefin searobin, Chelidonichthys spinosus was studied using 397 specimens collected by fisheries resources survey vessels bottom trawls of national institute of fisheries science in February, June, May, August and November 2022 from nineteen areas in the South Sea of Korea. The species ranged from 9.7 cm to 42.0 cm in total length (TL). C. spinosus was bottom-feeding carnivore that fed mainly on Macrura, which constituted 85.7% of %IRI, especially Leptochela sydniensis. The proportion of Macrura decreased inversely proportional to body size, whereas the consumption of Brachyura and Stomatopoda increased gradually. With the increase in body size of C. spinosus, a significant rise in the mean weight of prey per stomach (mW/ST) was observed (one-way ANOVA, P<0.05).
In ecosystems within limited resources, interspecific competition is inevitable, often leading to the competitive exclusion of inferior species. This study aims to provide foundational information for the conservation and restoration management of Microphysogobio rapidus by evaluating species’ ecological response to biological factors within its habitat. To understand this relationship, we collected food web organisms from site where M. rapidus coexist with Microphysogobio yaluensis, a specie ecologically similar to M. rapidus, and evaluated the trophic levels (TL), isotopic niche space (INS), and the overlap of INS among fishes within the habitat using stable isotope analysis. Our analysis revealed that the M. rapidus exhibited a higher TL than M. yaluensis, with TL of 2.6 and 2.4, respectively. M. yaluensis exhibited a broad INS, significantly influencing the feeding characteristics of most fish. Conversely, M. rapidus showed a narrow INS and asymmetric feeding relationships with other species, in habitats with high competition levels. This feeding characteristics of M. rapidus indicate that the increase in competitors sharing the similar resources lead to a decrease in available resources and, consequently, is expected to result in a decrease in their density.
Changes in contents of free sugars, amino acids, and fatty acids of legumes were analyzed for each phase of in vitro digestion. In addition, contents of resistant starch in raw and digested pulses were compared. Soybeans, kidney beans, cowpeas, and chickpeas were analyzed. An in vitro digestion model was used to analyze contents of nutrients using LC-MS and GC-MS. Stachyose in kidneybean, cowpea, and chickpea increased as the digestion phase progressed. In four types of legumes, raffinose slightly decreased or showed no significant difference between the Oral phase and the BBMV phase. Content of glucose, a monosaccharide, increased during the BBMV phase. During the digestion phase, levels of free amino acids and free fatty acids also increased. Content of resistant starch was reduced compared to that in the raw material. It was 0.01g/100 g food in soybean, 1.06 g/100 g food in red kidney bean, 0.77g/ 100g food in cowpea, and 0.76 g/100 g food in chickpea. It was confirmed that nutrients in the in vitro digestion model were liberated at each digestion phase with changes in the content of resistant starch. These results are expected to be used as fundamental data for obtaining bioavailability of nutrients.
Invasive predators are one of the most damaging species groups to biodiversity. In the Nakdong River, the lake skygazer Chanodichthys erythropterus is a dominant species that is fiercely carnivorous and a concern for commercial fish. Although it is important to understand the ecological characteristics related to the feeding habit, studies on the diets of lake skygazer in Nakdong River have been limited to studies of gut contents. In this study, the trophic position (TP) and feeding habits of C. erythropterus were studied by calculating TPs using samples collected from 13 sites throughout the Nakdong River. Compound-specific isotopic analysis of amino acids provided reliable TPs from the muscle of Lake skygazer C. erythropterus without any isotope baseline. The results were approximately 3 to 3.6 and suggesting a carnivorous but size-dependent prey variation. In particular, the TP variability of C. erythropterus observed in the Nakdong River showed that it had a selective feeding habit compared to carnivorous fish species of relatively similar trophic levels.
Diet composition and trophic level of Trachurus japonicus were studied using 417 specimens collected by trawls, set nets and purse seine fisheries from March 2019 to February 2020 in the South Sea of Korea. The size of T. Japonicus ranged from 7.0 to 49.8 cm in total length. T. japonicus were a carnivore that fed mainly on euphausiids and pisces. In eddition, T. japonicus fed on small quantities of cephalopods, crabs etc. T. japonicus showed ontogenetic changes in feeding habits. The proportion of euphausiids decreased inversely proportional to body size whereas the consumption of pisces gradually increased. As body size of T. japonicus increased the mean number of prey per stomach and the mean weight of prey per stomach tended to increase, but the mean number of prey per stomach was not significantly different. As a result of the feeding strategy analysis, T. japonicus were specialized feeders with pisces and euphausiids as their dominant prey. The trophic level ranged between 3.57 ± 0.54 and 3.91 ± 0.65, and increased asymptotically with size of specimens. The average trophic level of the T. japonicus was 3.79 ± 0.61.
본 연구는 2019년 8월 한반도 주변해역(동해, 서해, 남해, 동중국해)에서 탄소 및 질소 안정동위원소 기법을 활용하여 하위영양 단계에서의 먹이망 구조를 파악하였다. 입자성 유기물(POM)의 δ13C 범위는 -26.18 ~ 20.61 ‰, δ15N 범위는 5.36 ~ 15.20 ‰의 넓은 범위를 보였다. POM과 각 생물별 개체군 사이의 δ13C 분별작용의 결과는 대부분 micro-POM을 섭식하는 것으로 확인하였으나 해역 간 차이를 보였 다. 각 생물별 영양단계는 chaetognaths (3.40±0.61)가 가장 높은 영양단계에 있음을 확인하였다. 동위원소 혼합모델을 적용한 결과에서 chaetognaths의 먹이원으로 copepods (13 ~ 48 %)와 euphausiids (20 ~ 51 %)가 가장 높은 기여도를 나타냈다. 본 연구결과 각 해역별 먹이원의 제한적 공급 및 다양성의 차이가 먹이망 구조 및 각 생물별 동위원소 비에 영향을 미친 것으로 판단된다.
Recently, quantitative analyses of food web structure based on carbon and nitrogen stable isotopes are widely applied to environmental assessments as well as ecological researches of various ecosystems, particularly rivers and streams. In the present study, we analyzed carbon and nitrogen stable isotope ratios of POM (both planktonic and attached forms), zooplankton, benthic macroinvertebrates and fish collected from 6 sites located at Nakdong River. Samples were collected from upstream areas of 5 weirs (Sangju, Gangjeong- Goryeong, Dalseong, Hapcheon-Changnyeong, and Changnyeong-Haman Weirs) and one downstream area of Hapcheon-Changnyeong Weir in dry season (June) and after rainy season (September). We suggested ranges of their carbon and nitrogen stable isotope ratios and calculated their trophic levels in the food web to compare their temporal and spatial variations. Trophic levels of organisms were relatively higher in Sangju Weir located at upper part of Nakdong River, and decreased thereafter. However, the trophic levels were recovered at the Changnyeong-Haman Weir, the lowest weir in the river. The trophic level calculated by nitrogen stable isotope ratios showed more reliable ranges when they were calculated based on zooplankton than POM used as baseline. The suggested quantitative ecological information of the majority of biological communities in Nakdong River would be helpful to understand the response of river food web to environmental disturbances and can be applied to various further researches regarding the quantitative approaches for the understanding food web structure and function of river ecosystems as well as restoration.
Compound specific isotope analysis of amino acids (CSIA-AAs) is being highlighted as an alternative approach for overcoming some restrictions in application of stable isotope analysis of bulk tissue (SIA) for trophic position (TP) estimation. However, this approach has rarely been applied in Korea. The present study determines TP of two Polychaeta (Nephtyidae and Glyceridae) and two fish species (Platycephalus indicus and Lophius litulon) collected from the Geum River estuary using nitrogen isotope ratio of amino acid and compared with the TP values estimated by SIA. The Polychaeta species, sampled in two sites, showed similar TP between SIA (2.7 and 3.1) and CSIA-AAs (2.6 and 3.1). However, for both fish species, TP values displayed a large difference between SIA (3.1 and 2.3) and CSIA-AAs (3.8 and 3.7). In this study TP values estimated by CSIA-AAs showed more similar to the previously reported gut content analysis of both fishes compared with the results of SIA. Current study suggests the applicability of nitrogen isotope ratio of amino acid to understand coastal ecosystem structure and trophic ecology.
이전 실험에서 결정된 생육 단계별 최적 환경조건을 평가하기 위한 4가지 처리는 다음과 같았다: 생육 단계별 최적 환경 조건을 사용한 광독립 영양배양(photoautotrophic optimum condition with growth stage (POG)), 생육 단계별 평균 광합성 광량자속 밀도(photosynthetic photon flux density(PPFD))와 CO2 농도를 사용한 광독립 영양배양(photoautotrophic constant condition with average PPFD and CO2 of POG(PCA)), 생육 단계별 최대 PPFD와 CO2농도를 사용한 광독립 영양배양(photoautotrophic constant condition with maximum PPFD and CO2 of POG(PCM)) 그리고 대조군으로 3%의 당을 포함한 광혼합 영양배양(photomixotrophic conventional condition with 3% sucrose(PMC)). 실험 결과 각 생육 단계별 환경제어(POG)는 기내에서 배양된 감자 소식물체의 모든 생육 관련 항목에서 유의적 증진을 유도하였다. 또한 단위 건물중 당 소비된 전력과 CO2는 모든 처리 중 POG에서 가장 낮았다. 기외 이식 이후에도 POG에서 생산된 감자 묘는 PMC에서 자란 감자 묘와 전체적으로 큰 차이 없이 왕성한 생육을 유지하였다. 특히 POC는 기존 광혼합 영양방식(PCM)과 비교했을 때 기외 이식전과 이식 후 20일째 각각 4.7배와 3.8배 높은 건물중을 기록하였다. 따라서 POG와 같은 생육 단계별 환경 조절을 통한 광독립 영양 미세 증식 방법은 에너지 절감 효과와 함께 무균의 건강한 감자 묘의 생산에 효과적이었다.
본 연구는 묘의 생육을 최대화하기 위하여 생육 단계를 임의로 구분하고 각 단계 별 적정 환경 조건을 확립함에 목적을 두었다. 생육 단계는 총 20일의 배양기간을 6일(1단계), 7일(2단계), 7일(3단계)의 3단계로 구분하였다. 첫 번째 단계는 활착기로서 환경 처리 별 생육에 큰 차이가 나타나지 않았다. 높은 환경 조건에 의한 잎의 장해를 고려하였을 때, 80μmmol·m-2·s-1 의 PPFD 및 대기 중의 CO2 농도가 적합하였다. 두 번째 단계에서는 PPFD 및 CO2 조건이 높아짐에 따라 건물 중을 중심으로 부분적으로 향상되었다. 에너지 효율과 생육을 고려할 때, 160μmmol·m-2·s-1 의 PPFD와 700μmmol·mol-1의 CO2가 적합할 것으로 생각되었다. 세 번째 단계에서는 PPFD 및 CO2 농도가 높아짐에 따라 유의적으로 생육이 향상되었으며, 잎 및 마디의 발달상태도 현저히 향상되었다. 따라서 보다 적극적으로 생육증진을 고려할 때, 320μmmol·m-2·s-1 PPFD와 1800μmol·mol-1의 CO2가 적합할 것으로 생각되었다. 생육 단계별 환경 조절은 초기단계에 상대적으로 낮은 조건을 유지하고 후기단계에서 충분한 조건을 제공함으로써 건전한 묘를 생산할 수 있고 에너지 및 물질의 투입량을 절약할 수 있다.
Calcium plays an important role for the organisms' physiology, reproduction, and growth. Calcium amount and transfer efficiency along trophic levels were compared at two different geological areas, Limestone area (LS) and Granitic Gneiss area (GG) in 1992