This study is to deal with the cause analysis and improvement ideas for breakage to hydraulic pipes mounted on self-propelled howitzers. Hydraulic piping is one of the core components of a hydraulic system. This is because in the case of devices that use hydraulic pressure as a power source, hydraulic oil is supplied through hydraulic piping to operate. Compared to the main hydraulic assembly, its importance is low, so there are not many studies or failure analysis cases on it. However, contrary to this, cases of hydraulic pipe failure account for a significant proportion of the total number of failures, requiring in-depth technical review. In this study, we aim to analyze the causes of failures in hydraulic pipes of self-propelled guns operated by the military and propose improvement measures. It is expected that this study will aid as a reference for problem solving when similar failures occur in the future.
In order to prevent disconnection of the hydraulic pump EDV cable, this study judged the vibration generated by the pump as the greatest effect on disconnection, and confirmed the vibration effect. And it had a structure that was vulnerable to vibration because of the wire flow space inside the EDV cable connector. After applying the improved adapter, vibration analysis, excitation test, and bending strength test were performed to confirm the effectiveness of design change and improvement. As a result of vibration analysis, the amount of vibration was reduced by about 10 times compared to the existing product, and the strength increased by about 4 times in the bending strength test was confirmed to increase the effect of preventing disconnection due to vibration.
The main hydraulic pump is a device that generates the hydraulic pressure needed for the K2 tank. It is a pressure-compensated swash plate piston pump that generates the hydraulic power necessary to drive the hydraulic device. Hydraulic pump design changes were made due to frequent failures of the hydraulic pump. As a result of checking the operation records of the hydraulic pump, about 71% of the total engine operation time was in a stationary state where hydraulic pressure was not needed. This has the problem of constantly running when the engine is started, consuming unnecessary endurance time, and generating high noise. In this study, ISG(Idle Stop & Go) was applied to improve operation method. When applying ISG, the pressure can be reduced to about 85% or less in an environment where the operation of the main hydraulic pump is not necessary. So, the lifespan of the main hydraulic pump increases as a result of ISG application, thereby reducing the waste of national funds due to maintenance costs. Also, it is expected to contribute to improving combat power by reducing crew fatigue due to noise reduction.
In this study, the change in the mold opening stroke of important functional parts according to the 20, 50, 80, and 100% increase in the injection speed of a hydraulic 150 ton hydraulic injection molding machine was studied to verify the accuracy of the injection speed and mold opening stroke and the reproducibility of the standard deviation. The null and alternative hypotheses were confirmed by conducting hypothesis verification according to the experimental condition change using the experimental design method.
Hydraulic cylinders are hydraulic system parts widely used in various industries such as construction machinery, machine tools, robots, automobiles, and automation systems. The maximum capacity of vane pumps used in machine tools is 70bar, but the actual operating pressure is less than 50bar. The allowable pressure of a commercial hydraulic cylinder is 140 - 210 bar, so it is heavy and uneconomical because it uses thick and strong materials. In this paper, we intend to develop a small and lightweight hydraulic cylinder suitable for the allowable pressure of 50bar or less so that it can be used in the hydraulic system field. In order to develop a compact hydraulic cylinder, flow analysis, and structural analysis were conducted under piston forward and backward conditions. The analyzed flow rate value was calculated to be suitable for the operation of the hydraulic cylinder. As a result of comparing the stress calculated under the forward/backward condition of the piston with the yield stress of the material, the safety factor was calculated to be more than 2.5.
In order to analyze the pressure drop of the fluid passing through the hydraulic coupler, a flow model using the Computational Fluid Dynamics (CFD) analysis technique was developed and the fluid flow rate and pressure distribution inside the coupler were analyzed. The analysis model was corrected by comparing the pressure drop measurement using a 6.35mm hydraulic coupler with the ISO reference value and the simulation prediction value. Using the calibrated model, the flow rate and pressure drop of 13 types of hydraulic couplers distributed on the market were analyzed, and their performance was determined by comparing them with ISO reference values. In the case of type A coupler, the pressure drop was generally higher than the ISO reference value, and in the case of type B coupler, the pressure drop was similar to or lower than the ISO reference value. It was confirmed that the complex flow analysis inside the hydraulic coupler could be easily performed through computational fluid dynamics (CFD) modeling, and based on this, problems could be identified and performance could be improved performance.
The purpose of this study is to develop and apply an oil leak detector using a capacitive sensor to detect oil leak in hydraulic equipment. The developed oil leak detector consists of a sensor and a sensing circuit. The sensor is designed using the difference in the permittivity of air and oil to change the capacitance, and the sensing circuit is composed of a charge amplifier and rectifier circuit. The sensing device is made of a PCB module to output the DC analog signal. In this study, this oil detector was installed in a cyclic pressure tester for evaluating valve life and was applied to detect the leakage of the test valve. It can also be applied to detecting the oil leakage of various hydraulic types of equipment and reduce maintenance costs by preventing large leakage of hydraulic oil.
In the power steering systems used for automobiles, because of its small size and low noise, a balanced type hydraulic vane pump is mainly used as a power source. Therefore it is requested to research on the lubrication characteristics of a oil hydraulic vane pump which is the key part to improve its performance. The performance of a oil hydraulic vane pump is influenced by the lubrication characteristics of the critical sliding components. Thus, lubrication characteristics between the shaft and the journal bearing have to be researched for the design and the performance improvement of a oil hydraulic vane pump. Therefore, in this paper, it is theoretically investigated that the lubrication characteristics between the shaft and the journal bearing of a balanced type oil hydraulic vane pump for power steering systems. The results demonstrate that lubrication characteristics are significantly influenced by the clearance between the shaft and the journal bearing.
This paper develops a flow control block for a hydraulic system of a tunnel boring machine. The flow control block is a necessary component to ensure stability in the operation of the hydraulic system. In order to know the pressure distribution of the flow control block, the flow analysis was performed using the ANSYS-CFX. It was confirmed that the pressure and flow rate were normally supplied to the hydraulic system even if one of the four ports of the flow control block was not operated. In order to evaluate the structural stability of the flow control block, structural analysis was performed using the ANSYS WORKBENCH. As a result, the safety factor of the flow control block is 1.54 and the structural stability is secured.
In this paper, the long-term reliability of swash plate type hydraulic pump is studied by prognostics method. For the purpose, the pumping power of hydraulic pump is measured for 00 cycles and the performance after 00 cycles is estimated using the particle filter method. To verify the predicted 00 cycle's performance, the actual test results are compared with the estimated result and the trend of estimation is well matched with actual test results. The long-term reliability evaluation using the prognostics method performed in this study shows the feasibility that can be utilized in development phase of tracked vehicle to improve the quality of initial products.
To develop a high pressure main drive hydraulic cylinder for concrete pumping car, it is essential to accurately predict the internal flow structure of the hydraulic cylinder and ensure structural stability. Therefore, in this study structural and buckling analysis were essentially used for safe design. From analysis results, the maximum equivalent stress occurred when the cylinder thickness was 15 mm and the hydraulic cylinder was deemed to be structurally safe. The buckling analysis of the hydraulic cylinder assembly showed that the critical load factor was from 1.3732 to 12.021 and the critical force factor in the entire area was not observed because the critical load factor was greater than 1. The average flow rate of cylinder was uniformly distributed and the flow rate error for the inlet and outlet port could be found to be approximately identical to that of 2 %.
A hydraulic system is a driving or transmission system that uses high pressure hydraulic fluid to power hydraulic machinery. It refers to the transfer of energy from flow and pressure. A hydraulic pump is a mechanical source of power that converts mechanical power into hydraulic energy. Cavitation is the formation of vapor cavities in liquid that are the consequence of forces acting upon the liquid. It usually occurs when a liquid is subjected to rapid changes of pressure that cause the formation of cavities where the pressure is relatively low. In this study, a cavitation was measured when the vane pump is rotating. The rotation speed of the vane pump was tested at 1000 rpm to 5000 rpm. At that time, the temperature and pressure of each hydraulic oil were changed and controlled. The results show that flow rate and noise are changed when cavitation occurs.
A press which has a 20 percent share in machine tools is one of the production facilities. Recently hydraulic press is used to reinforce competitiveness of the manufacturing industry. The press by using metal powder makes products without additional process while conventional processing machine makes products after removing unnecessary parts. In this way, large quantity of products can be produced in a short time. Researches to manufacture products by the press have been proceeding after 1970. In this study, structure and displacement analysis for shape parameters for punch used as the component for hydraulic press was investigated and structural stability was identified based on the results.