Autonomous vehicle (AV) technology is rapidly entering the commercialization phase driven by advancements in artificial intelligence, sensor fusion, and communication-based vehicle control systems. Real-world road testing and pilot deployments are increasingly being conducted, both domestically and internationally. However, ensuring the safe operation of AVs on public roads requires not only technological advancement of the vehicle itself but also a thorough pre-evaluation of the road environments in which AVs are expected to operate. However, most previous studies have focused primarily on improving internal algorithms or sensor performance, with relatively limited efforts to quantitatively assess how the structural and physical characteristics of road environments affect AV driving safety. To address this gap, this study quantitatively evaluated the compatibility of road environments for AV operation and defined the road conditions under which AVs can drive safely. Three evaluation scenarios were designed by combining static factors such as curve radius and longitudinal gradient with dynamic factors such as level of service (LOS). Using the MORAI SIM autonomous driving simulator, we modeled the driving behaviors of autonomous vehicles and buses in a virtual environment. For each scenario, the minimum time to collision (mTTC) from the moment the AV sensors detected a lead vehicle was calculated to assess risk levels across different road conditions.The analysis revealed that sharper curves and lower service levels resulted in significantly increased risk. Autonomous buses exhibited a higher risk on downhill segments, autonomous vehicles were more vulnerable to uphill slopes and gradient transitions. The findings of this study can be applied to establish road design standards, develop pre-assessment systems for AV road compatibility, and improve AV route planning and navigation systems, thereby providing valuable implications for policy and infrastructure development.
This paper presents a novel methodology for assessing the vulnerabilities of autonomous vehicles (AVs) across diverse operational design domains (ODDs) related to road transportation infrastructure, categorized by the level of service (LOS). Unlike previous studies that primarily focused on the technical performance of AVs, this study addressed the gap in understanding the impact of dynamic ODDs on driving safety under real-world traffic conditions. To overcome these limitations, we conducted a microscopic traffic simulation experiment on the Sangam autonomous mobility testbed in Seoul. This study systematically evaluated the driving vulnerability of AVs under various traffic conditions (LOSs A–E) across multiple ODD types, including signalized intersections, unsignalized intersections, roundabouts, and pedestrian crossings. A multivariate analysis of variance (MANOVA) was employed to quantify the discriminatory power of the evaluation indicators as the traffic volume was changed by ODD. Furthermore, an autonomous driving vulnerability score (ADVS) was proposed to conduct sensitivity analyses of the vulnerability of each ODD to autonomous driving. The findings indicate that different ODDs exhibit varying levels of sensitivity to autonomous driving vulnerabilities owing to changes in traffic volume. As the LOS deteriorates, driving vulnerability significantly increases for AV–bicycle interactions and AV right turns at both signalized and unsignalized intersections. These results are expected to be valuable for developing scenarios and evaluation systems to assess the driving capabilities of AVs.
자율주행 차량이 상용화됨에 따라 연구에 사용할 수 있는 자율주행 차량의 주행궤적 자료를 제공하고 연구하는 기관이 증가하고 있다. 캘리포니아 자동차관리국은 사고 당시 차량의 거동과 주변 환경을 기록한 자율주행 차량 사고 보고서를 제공한다. Waymo는 라이다, 카메라 등을 통해 수집한 자율주행 차량의 실주행 자료를 제공한다. 본 연구에서는 캘리포 니아 자동차관리국에서 제공하는 자율주행 차량 사고 보고서와 Google Street Map을 이용하여 사고 당시의 도로유형과 도로환경요소 및 사고 당시 상황을 파악하고, 베이지안 네트워크(BN)을 통해 자율주행 차량 사고 영향요인을 파악하였 다. 랜덤 포레스트를 통해 앞에서 파악한 자율주행 차량 사고 영향요인들의 변수 중요도를 추출하고 이를 기반으로 자율 주행 차량 주행 시나리오를 도출하였다. 도출한 자율주행 차량 주행 시나리오와 유사한 상황을 보이는 Waymo Open Dataset의 자율주행 차량 실제 주행궤적을 매칭하여 자율주행 차량 주행 행태 기반 사고 위험도 평가 지표를 도출하였 다. 본 연구의 결과는 앞으로 도로환경요소 및 자율주행 차량 주행궤적에 따른 자율주행 차량 주행 안전성 연구의 기반 이 될 것으로 기대된다.
This study proposes a method to evaluate the publicity of real-time, demand-responsive, autonomous public-transportation systems. By analyzing real-time data collected based on publicity evaluation indicators suggested in previous research studies, this study seeks to establish a system that objectively assesses the publicity of public transportation. Thus, the introduction of autonomous public transportation systems is expected to contribute to solving problems in underserved transportation areas and enable more sophisticated public transportation operations. We reviewed evaluation indicators proposed in previous studies. Based on this review, publicity evaluation indicators were derived and specific criteria were selected to assess systematically the publicity of autonomous public transportation. An AHP analysis was conducted to assess the relative importance of each indicator by analyzing the importance of the selected indicators. Additionally, to score the indicators, minimum and maximum target values were established, and a method for assigning scores to each indicator was examined. The most important factor in the publicity evaluation of autonomous demand-responsive transport (DRT) was the “success rate of allocation to weak public transportation service areas,” with a significance level p of 0.204. This was analyzed as a key evaluation criterion because of the importance of service provision in areas with low-public-transportation accessibility. Subsequently, “Accessing distance to a virtual station” (p = 0.145) was evaluated as an important factor representing the convenience of the service. “Waiting time after allocation” (p = 0.134) also appeared as an important evaluation factor, as reducing waiting time considerably affected service quality. Conversely, “compliance rate of velocity” yielded the lowest significance (p = 0.017), as speed compliance was typically guaranteed owing to autonomous driving technology. This study proposed a specific evaluation method based on publicity indicators to provide a strategic direction for improving services and enhancing the publicity of autonomous DRT systems. These results can serve as a foundational resource for improving transportation services in underserved areas and for enhancing the overall quality of public transportation services. However, the study’s limitation was its inability to use real-time autonomous public transportation data, relying instead on I-MoD data from Incheon. This limitation constrained the ability to establish universal benchmarks because data from various municipalities were not included. Future research should collect and analyze data from diverse regions to establish more reliable evaluation indicators.
자율운항선박의 기술혁신과 상용화는 해운산업의 패러다임을 근본적으로 변 화시키고 있으며, 그 과정에서 인공지능의 발전이 중요한 역할을 담당하고 있 다. 그러나 디지털 융복합에 기반한 기술적 혁신에도 불구하고, 선원의 인권 보호와 프라이버시 침해 등과 같은 문제는 여전히 법적 사각지대로 남아있는 실정이다. 따라서 이 연구는「자율운항선박 개발 및 상용화 촉진에 관한 법 률」 제19조에 인권영향평가 조항을 신설함으로써 자율운항선박의 운항 과정 에서 발생할 수 있는 선원 인권 침해 요소를 사전에 식별하고 방지할 수 있는 규제적 장치를 마련하고자 한다. 특히 이 연구에서 제안하는 신설 조항은 자율 운항선박법 제19조의 개정을 통해 선원의 인권 보호와 해사데이터 보안을 담 보할 수 있는 의무 조항을 포함하도록 하고, 해양수산부장관이 자율운항선박의 시범운항 및 실증 과정에서 선원의 인권 보호를 위한 인권영향평가를 의무적으 로 시행할 수 있는 법적 근거를 명확히 하는 데 목적을 둔다. 더불어 이 연구는 2024년 기준 국회에서 논의 중인 「인공지능 기본법」 등의 관련 법령과의 연 계를 통해 자율운항선박과 연계된 이해관계자들의 프라이버시 및 데이터 보안 문제를 국내외 다중사례분석 방법에 기반하여 층위별로 분석하였으며, 국제해 사기구의 MASS Code 등 국제 규범과의 조화를 통한 제도 개선 방안을 포함하 고 있다. 따라서 이 연구는 향후 선원인권영향평가 기준의 실효성을 검증하여 자율운항선박의 상용화에 대비하여 사전예방의 관점에서 선원인권 침해를 최 소화하면서 신뢰성과 안전성을 갖춘 선박운항이 가능하도록 하는 법적·제도적 기초를 확립하는 데 기여할 것이다.
자율주행차량의 첨단 운전자 보조 시스템(ADAS)의 발전은 자율주행차량의 상용화를 가속화하고 있지만, 그 안전성을 입증하기 위한 충분한 테스트와 검증이 필요하다. 실제 차량을 이용한 대규모 테스트는 비용과 시간뿐만 아니라 다양한 시나리오를 구현하고 평가하 는 데 어려움이 있어, 다수의 연구자들은 시뮬레이션을 활용하고 있다. 이러한 문제를 해결하기 위해, 본 연구에서는 차량 시뮬레이션 소프트웨어인 CarMaker와 교통 흐름 시뮬레이션인 VISSIM을 결합하여 공동으로 시뮬레이션을 진행한다. 또한 두 시뮬레이션의 장점 을 결합하여 자율주행차량의 데이터를 보다 포괄적으로 분석할 수 있는 프레임워크를 제안한다. 시뮬레이션 결과, 각각의 시뮬레이션 에서 얻은 Ego Vehicle의 속도 값은 미세한 차이를 보였으며, 이는 실시간 시뮬레이션의 통신 과정에서 발생하는 오류로 해석된다. 또 한, 특정 시나리오에서는 차량이 급정지 후 출발하는 형태를 보였으며, 이는 자율주행차량이 주변 차량의 주행을 인식하여 주행 패턴 에 변화를 주는 것으로 해석된다. 향후에는 도심 도로에서의 자율주행 평가를 통해 복잡한 교통 상황과 불확실한 요소들로 인해 어려 운 문제를 겪는 상황을 분석할 수 있을 것으로 기대된다.
곧 다가올 미래에는 자율운항선박, 육상 원격제어센터에서 제어되는 선박, 그리고 항해사가 탑승하여 운항하는 선박이 함 께 공존하며 해상을 운항할 것이며, 이러한 상황이 도래했을 때 해상 교통 환경의 안전을 평가할 수 있는 방법이 필요할 것으로 사료 된다. 이에 본 연구에서는 자율운항기술을 사용하여 항해사가 직접 조종하는 선박과 자율운항선박이 공존하는 해상환경 하에서 선박 조종시뮬레이션을 통해 통항 안전성을 평가하기 위한 방안을 제시하였다. 자선은 6-자유도 운동 기반의 MMG 모델을 심층 강화학습 기법 중 하나인 PPO 알고리즘으로 학습하여 자율운항 기능을 갖출 수 있도록 설계하였다. 타선은 평가 대상 해역의 해상 교통 모델 링 자료로부터 선박이 생성되도록 하였고, 기 학습된 선박모델을 기반으로 자율운항 기능을 구현되도록 하였다. 그리고 해양기상 자 료 데이터베이스로부터 조위, 파랑, 조류, 바람에 대한 자료를 수집하여 수치 모델을 수립하고 이를 기반으로 해양기상 모델을 생성하 여 시뮬레이터 상에서 해양 기상이 재현되도록 설계하였다. 마지막으로 안전성 평가는 기존의 평가 방법을 그대로 유지하되, 선박조 종시뮬레이션에서 해상교통류 시뮬레이션을 통한 충돌 위험성 평가가 가능하도록 하는 시스템을 제안하였다.
PURPOSES : This study evaluates the effectiveness of traffic flow optimization when giving safety strategy guidance to a connected autonomous vehicle (CAV) based on information received through infrastructure cooperation in a V2X environment for non-signal intersection. METHODS : To evaluate the effectiveness of safety strategy guidance based on developed traffic flow control algorithm at a non-signalized intersection, it was implemented on simulation. A scenario based on the Level of Service (LOS) and the market penetration rate(MPR) of autonomous vehicles was established. The simulation results were divided into safety, operation, and environment to evaluate the effect, and the effect of optimizing traffic flow was finally derived through the integrated evaluation score. RESULTS : As a result, when safety strategy guidance was provided, the number of conflicts and CO emissions decreased by about 29% and about 15%, improving safety and environmental performance. In the case of operation, the mean of delay time was increased overall by 1%, but in the case of MPR 50 and above, the delay time was reduced by about 38%, thereby increasing operation. Finally, the aspect of traffic flow optimization, effectiveness of safety strategy guidance was derived through the integrated evaluation score, and the average integrated evaluation score improved from MPR 20 or higher. CONCLUSIONS : Providing guidance had the effect of optimizing traffic flow at a non-signal intersection. In the future, V2X communications will provide CAV with algorithm-based guidance developed in this study to control driving behavior. it will support safe and efficient driving at non-signal intersections.
본 연구는 멕시코에 진출한 국내 다국적기업 해외자회사의 기업의 사회적 책임(corporate social responsibility; 이하 CSR) 활동이 현지 근로자들의 정서적 몰입을 통해 창의적 행동에 미치는 영향을 고찰하였다. 더불어 정서적 몰입이 창의적 행동에 미치는 긍정적인 효과를 촉진시키는 상황조건으로서 평가 공정성 및 직무 자율성을 제시하 였다. 선행연구들은 기업의 CSR 전략이 기업수준의 성과변수에 미치는 영향에 주로 초점을 맞춘 반면, 기업의 해외 진출 경쟁이 치열함에도 불구하고 해외자회사의 CSR 활동에 대한 현지 직원들의 실제 인지 수준을 측정하여 개인수준에서 매우 중요한 변수인 창의적 행동으로 연결되기까지의 메커니즘과 상황조건에 대해 심도있게 고찰한 연구는 상당히 미비하다. 이에 본 연구에서는 현지 경영활동에서 외국인 비용을 극복하는데 중요한 전략이 될 수 있는 현지 CSR 활동과 조직 내부의 제도적 요인들이 현지 근로자들의 창의적 행동에 미치는 효과를 개인수준에 서 통합적인 관점으로 살펴보는데 주목하였다. 멕시코 현지 근로자 192명을 대상으로 분석을 실시한 결과, 현지 직원들이 인지하는 해외자회사의 CSR 활동은 그들의 정서적 몰입과 정의 관계를 나타냈으며, 정서적 몰입은 창의적 행동과 정의 관계를 보였다. 더불어 인지된 해외자회사의 CSR 활동과 창의적 행동 간의 관계에서 정서적 몰입의 매개효과 역시도 통계적으로 유의하였다. 또한, 정서적 몰입에 대한 인지된 평가 공정성 및 인지된 직무 자율성의 조절효과는 창의적 행동에 각각 유의한 것으로 나타났다. 구체적으로 인지된 평가 공정성 및 인지된 직무 자율성이 높은 그룹에서만 정서적 몰입과 창의 적 행동이 강한 정의 관계를 나타냈다. 이러한 연구결과를 토대로 다국적기업 해외자회사의 현지화 전략에 대한 의미있는 이론적 및 실무적 시사점을 제공한다.