검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 75

        4.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses on the driving control of indoor mobile robot during the development of QR Code-aware indoor mobility robots.
        4,000원
        5.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses on experimental environments for testbeds during the development of QR Code-aware indoor mobility robots.
        4,000원
        7.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses a study on the driving directions of QR Code-aware movable robots during the development of QR Code-aware indoor mobility robots.
        4,000원
        8.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper proposes a model predictive controller of robot manipulators using a genetic algorithm to secure the best performance by performing parameter optimization with the genetic algorithm. Genetic algorithm is a natural evolutionary process modeled as a computer algorithm and has excellent performance in global optimization, so it is useful for tuning control parameters. The sliding mode controller and inverse dynamics controller are included in the lower part of the model prediction controller to minimize the problems caused by non-linearity and uncertainty of the robot manipulator. The performance superiority of the proposed method as described above has been confirmed in detail through a simulation study.
        4,000원
        9.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses a study on the speculative navigation using auxiliary encoder during the development of QR Code-aware indoor mobility robots.
        4,000원
        10.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses a suggestion of control method in QR Code-aware indoor mobility robots.
        4,000원
        11.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of QR code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR codes and the convenience of producing and attaching a lot of information within QR codes have been raised, and many of these reasons have made QR codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR codes with the same horizontal and vertical sides, and the error is to create a QR code robot with accuracy to reach within 3mm. This paper focuses on the driving operation techniques during the development of QR code-aware indoor mobility robots.
        4,000원
        12.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The role of QR code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR codes and the convenience of producing and attaching a lot of information within QR codes have been raised, and many of these reasons have made QR codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR codes with the same horizontal and vertical sides, and the error is to create a QR code robot with accuracy to reach within 3mm. This paper focuses on the moving control model during the development of QR code-aware indoor mobility robots.
        4,000원
        13.
        2020.12 구독 인증기관 무료, 개인회원 유료
        4,000원
        14.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper deals with the dynamic control of redundant robot manipulator. Traditionally, the kinematic control schemes for redundant robot manipulator were developed from the point of speed and used under the assumption that the dynamic control of manipulator is perfect. However, in reality, the precise control of redundant robot manipulator is very difficult due to their dynamics. Therefore, the kinematic controllers for redundant robot manipulator were employed in the acceleration dimension and may be combined with the computed torque method to achieve the accurate control performance. But their control performance is limited by the accuracy of the manipulator parameters such as the link mass, length, moment of inertia and varying payload. Hence in this paper, the proportional and derivative control gains of the computed torque controller are optimized by the genetic algorithm on the typical payloads, and the neural network is applied to obtain the proper control gains for arbitrary loads. The simulation results show that the proposed control method has better performance than the conventional control method for redundant robot manipulator.
        4,000원
        16.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Robot manipulators are highly nonlinear system with multi-inputs multi-outputs, and various control methods for the robot manipulators have been developed to acquire good trajectory tracking performance and improve the system stability lately. The computed torque controller has nonlinear feedforward control elements and so it is very effective to control robot manipulators. If the control gains of the computed torque controller is adjusted according the payload, then more precise control performance is attained. This paper extends the conventional computed torque controller in the joint space to the Cartesian space, and optimize the control gains for some specified payloads in both joint and Cartesian spaces using genetic algorithms. Also a neural network is employed to have proper control gains for arbitrary payloads using generalization properties of the neural network. Computer simulation results show that the proposed control system for robot manipulators has excellent performance in various conditions.
        4,200원
        19.
        2017.10 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        목적 : 본 연구에서는 표전 근전도 신호를 기반으로 기존의 재활로봇 알고리즘의 성능의 개선하기 위한 새로운 특징 요소를 개발 및 검증하였다. 연구방법 : 기존의 선형 재귀 모델을 기반으로 한 실시간 로봇 제어 알고리즘을 수정하여, 2개 이상의 주파수 특징을 가지는 근 전도신호에 그 특징의 수에 맞추어 주파수 영역을 다르게 한 모델을 개발하였다. 결과 : 측정된 결과 개선된 알고리즘의 모델이 기존 모델대비 높은 정확도가 나옮을 확인할 수 있었으며, 향후 이를 적용 한다면, 근전도 기반 재활로봇의 정확도가 향상될 수 있음을 확인할 수 있었다. 결론 : 본 연구에서 제안된 복수의 필터뱅크 특징을 기반으로 한 개선될 선형 재귀알고리즘이 기존 알고리즘보다 높은 성능을 보임을 확인할 수 있었다. 이를 바탕으로 향후 뇌졸중 환자의 치료를 위한 재활 로봇을 제어하는데 활용된다면, 환자의 의지를 더욱 정확히 반영한 재활치료를 통하여 환자의 재활치료효과를 증진시킬 것이라 기대된다.
        4,000원
        20.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The predictive control system using model-based predictive control is a very effective way to optimize the present inputs considering the states and future errors of the reference trajectory, but it has a drawback in that a control input matrix must be repeatedly calculated with a long calculation time at every sampling for minimizing future errors in a predictive interval. In this study, we applied the neural network simulating the predictive control method for the trajectory tracking control of the mobile robot to reduce complex control method and computation time which are the disadvantage of predictive control. In addition, the neural network showed excellent performance by the generalization even for a different reference trajectory. Therefore, The controller is designed by modeling the model-based predictive control gains for the reference trajectory using a neural networks. Through the computer simulation, the proposed control method showed better performance than the general predictive control method.
        4,000원
        1 2 3 4