검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 36

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study evaluates the potential of various coagulants to enhance the efficiency of total phosphorus removal facilities in a sewage treatment plant. After analyzing the existing water quality conditions of the sewage treatment plant, the coagulant of poly aluminium chloride was experimentally applied to measure its effectiveness. In this process, the use of poly aluminium chloride and polymers in various ratios was explored to identify the optimal combination of coagulants. The experimental results showed that the a coagulants combination demonstrated higher treatment efficiency compared to exclusive use of large amounts of poly aluminium chloride methods. Particularly, the appropriate combination of poly aluminium chloride and polymers played a significant role. The optimal coagulant combination derived from the experiments was applied in a micro flotation method of real sewage treatment plant to evaluate its effectiveness. This study presents a new methodology that can contribute to enhancing the efficiency of sewage treatment processes and reducing environmental pollution. This research is expected to make an important contribution to improving to phosphorus remove efficiency of similar wastewater treatment plant and reducing the ecological impact from using coagulants in the future.
        4,000원
        3.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Wastewater management is increasingly emphasizing economic and environmental sustainability. Traditional methods in sewage treatment plants have significant implications for the environment and the economy due to power and chemical consumption, and sludge generation. To address these challenges, a study was conducted to develop the Intermittent Cycle Extended Aeration System (ICEAS). This approach was implemented as the primary technique in a full-scale wastewater treatment facility, utilizing key operational factors within the standard Sequencing Batch Reactor (SBR) process. The optimal operational approach, identified in this study, was put into practice at the research facility from January 2020 to December 2022. By implementing management strategies within the biological reactor, it was shown that maintaining and reducing chemical quantities, sludge generation, power consumption, and related costs could yield economic benefits. Moreover, adapting operations to influent characteristics and seasonal conditions allowed for efficient blower operation, reducing unnecessary electricity consumption and ensuring proper dissolved oxygen levels. Despite annual increases in influent flow rate and concentration, this study demonstrated the ability to maintain and reduce sludge production, electricity consumption, and chemical usage. Additionally, systematic responses to emergencies and abnormal situations significantly contributed to economic, technical, and environmental benefits.
        4,000원
        5.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the capacity of renewable power generation facilities rapidly increases, the variability of electric power system and gas turbine power generation is also increasing. Therefore, problems may occur that require urgent repair while the gas turbine rotor is stopped. When the gas turbine rotor turning is stopped and then restarted, if the turning period is not appropriate, severe vibration may occur due to rotor bending. As a result of the experiment, it was confirmed that normal operation is possible when the gap data measured at the start of rotor turning after maintenance work is similar to the existing value. And the vibration value at the start of rotor turning was lower as the rotor temperature was lower or the stop period was shorter.
        4,000원
        8.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 3개의 운전변수(압력, 공기량, 운전시간)를 실험 설계하고 마이크로 버블의 종말부상 속도(Terminal rise velocity)를 반응 값으로 하여 예측식 모델과 최적 조건을 수립하였다. 다항식 회귀분석을 통해 펌프의 압력(X1) 4.5bar, 공기량(X2) 3.3L/min 그리고 운전시간(X3)이 2.2min에서 종말상승속도(Terminal rise velocity)에 대한 최적값인 5.14 cm/min (85.7㎛/sec)을 얻었다. 또한, 레이저 입자계수 측정장치를 이용하여 2~5㎛ 및 25~50㎛ 영역에서의 가장 높은 마이크로버블 직경크기 분포를 확인하였다.
        4,600원
        9.
        2018.11 구독 인증기관·개인회원 무료
        본 실험에서는 대청호에서 발생한 남조류를 대상으로 SiC(Silicon carbide) 평막의 최적 운전조건을 도출하고자 하였다. 이를 위해 원수 농도에 따른 투과플럭스, 응집제 주입 조건, Air scrubbing 조건, 역세척(Backwashing) 유량 및 시간, 여과 및 역세척 시간, 응집제 종류 및 주입 농도 등에 대해 안정적으로 운전이 가능한 최적 조건을 도출하였다. 특히, 저농도의 응집제 주입에도 음전하를 띄는 조류 입자들과 전기적으로 중화를 일으켜서 생성된 미세 플럭들이 SiC 평막의 막표면에서 투수성을 증가시킨 것으로 사료된다. 이를 통해 도출된 설계인자로 제작한 Pilot Plant를 조류 제거시 적용하고자 한다. 본 연구는 환경부의 “환경정책기반공공기술개발사업”으로 지원받은 과제입니다.
        12.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the recovery rate of thermal desorbing (TD) method was investigated in relation to sample concentration and loading volume of reduced sulfur compounds (RSC). All the analysis of RSC was made by gas chromatography/pulsed flame photometric detector (GC/PFPD) combined with air server/thermal desorber (AS/TD). The RSC measurement data were obtained by loading gaseous RSC standards prepared at 4 concentrations (10, 20, 50, 100 ppb) at 6 injection volumes (40, 80, 200, 400, 800, and 1200 mL). The recovery rates of each RSC were computed in terms of relationship between expected vs. measured values. According to our analysis, the following conclusions can be drawn. First, the results were less stable at short loading time (1 and 2 min at 40 mL/min) with reduced recovery rate, especially with light RSCs (H₂S and CH₃SH). On the other hand, at sufficiently high loading volume, their quantification was limited by off-scale peaks (at a near 50 ng) due to the breakthrough of cold trap in TD. Thus, the optimization of TD-based analysis may be considered as a prerequisite for analyzing the RSC in a reliable manner.
        4,000원
        15.
        1999.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기존의 정수처리 공정인 응집 침전 과정을 대체하여 분리막을 이용한 상수처리 시스템의 개발을 목적으로한다. 따라서 4가지 형태의 정수처리 공정과 분리막의 분획 분자량을 변화시켰을 때 막 투과수의 변화와 안정적이며 높은 투과수를 얻기 위해 필요한 운전 조건의 최적화를 실험하였다 실험결과 한외여과막이 정밀여과막보다 막 투과수 감소경향이 완만했으며 초기 투과수 회복율은 더 높았다. 수질 분석의 결과 한회여과막이 정밀 여과막보다 우수하였지만 전처리에 의한 차이는 나지 않았다. 운전 조건에 따른 flux 는 온도, 선속도가 높을수록 압력이 낮을수록 flux 감소율이 적은 경향을 나타내었다.
        4,000원
        17.
        1986.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper aims at finding out the optimum operating condition to reduce fuel consumption for the training ship Pusan 402 with controllable pitch propeller. For this purpose, this paper examints the variation of ship speed and fuel consumption in accordance with the change of engine revolution and propeller pitch. The results obtained are as follows: 1. When engine revolution is constant, the ship speed sluggishly increases according to the increase of propeller pitch but fuel consumption extremely increases. The higher revolution the engine is, the more remarkable this tendency is. 2. As the engine revolution becomes lower, the fuel consumption per mile decreases. Howt.er = the fuel consumption under the same engine revolution differs according to the propeller pitch. 3. Specific fuel consumption is uniformed about 180g/ps.h at any case of load. 4. Among the various operating conditions which yield the same ship speed, fuel consumption lowers in the case of lower engine revolution and larger propeller pitch.
        4,000원
        18.
        2022.04 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the operational characteristics of wastewater treatment using Sequencing Batch Reactor (SBR) with Aerobic Granular Sludge (AGS) separator in the pilot plant. Pilot plant experiments were conducted using SBR with AGS separator and pollution removal efficiencies were evaluated based on the operational condition and surface properties of AGS. The results of the operation on water quality of the effluent showed that the average concentration of total organic carbon, suspended solids, nitrogen, and phosphorus was 6.89 mg/L, 7.33 mg/L, 7.33 mg/L, and 0.2 mg/L, respectively. All these concentrations complied the effluent standard in Korea. The concentration of mixed liquor suspended solid (MLSS) fluctuated, but the AGS/MLSS ratio was constant at 86.5±1.3%. Although the AGS/MLSS ratio was constant, sludge volume index improved. These results suggested that the particle discharged fine sludge and increased the AGS praticle size in the AGS. Optical microscopy revealed the presence of dense AGS at the end of the operation, and particles of > 0.6 mm were found. Compared to those of belt-type AGS separator, the required area and power consumption of the hydrocyclone-type AGS separator were reduced by 27.5% and 83.8%, respectively.
        19.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        The aim in this study was to remove Cl−, which can be problematic in the recycling of bottom ash, by identifying the optimum operating conditions for a soil electrolysis apparatus with spiral paddles and to use these as the base data in removing contaminants from various polluted soils using electrolysis. Unprocessed bottom ash collected from the openair storage yard at thermoelectric power plant H in Gyeong sang nam - do Province was used as the experimental material. The experimental methodology was to identify the optimum operating conditions to remove Cl− contained in the bottom ash using the following variables: use or not of spiral paddles, application or not of electrolysis, change of concentration of the electrolyte solution, electrolysis application time, and the voltage level during electrolysis. From the results, the highest removal efficiency of 91.4% was shown under the following conditions: use of the spiral paddles, use of 0.3% NaOH electrolyte solution, 20 min of electrolysis; and a voltage level of 5 V during electrolysis. It is evident that application of the soil electrolysis apparatus for removal of Cl− from bottom ash could be valuableas base data for purification of polluted soils in the future.
        20.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        Waste management has become a very crucial issue in many countries, due to the ever-increasing amount of waste material. Recent studies have focused on an innovative technology, gasification that has been demonstrated to be one of the most effective and environmentally friendly methods of solid waste treatment and energy utilization. In this study, a gasification process has been investigated systematically by numerical simulation, in order to obtain optimum design conditions for a commercial-scale facility of an updraft fixed-bed gasifier. Turbulent flow field was calculated with the incorporation of the proper flow model for turbulence and inertial resistance for the porous region of SRF loading. The calculated temperature and pressure drop (ΔP) at exit of the gasifier were in good agreement with measured values. Next, a detailed thermochemical model was employed to estimate the syngas composition by gasification. Results showed that a better plant solution depends on both the air-fuel ratio (AFR) and the steam and carbon mole ratio (S/C). In this study, the gasification efficiency was best at an AFR of 0.25-0.3 and an S/C below 0.5.
        1 2