검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 42

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Additive Manufacturing (AM) is a process that fabricates products by manufacturing materials according to a three-dimensional model. It has recently gained attention due to its environmental advantages, including reduced energy consumption and high material utilization rates. However, controlling defects such as melting issues and residual stress, which can occur during metal additive manufacturing, poses a challenge. The trial-and-error verification of these defects is both time-consuming and costly. Consequently, efforts have been made to develop phenomenological models that understand the influence of process variables on defects, and mechanical/ electrical/thermal properties of geometrically complex products. This paper introduces modeling techniques that can simulate the powder additive manufacturing process. The focus is on representative metal additive manufacturing processes such as Powder Bed Fusion (PBF), Direct Energy Deposition (DED), and Binder Jetting (BJ) method. To calculate thermal-stress history and the resulting deformations, modeling techniques based on Finite Element Method (FEM) are generally utilized. For simulating the movements and packing behavior of powders during powder classification, modeling techniques based on Discrete Element Method (DEM) are employed. Additionally, to simulate sintering and microstructural changes, techniques such as Monte Carlo (MC), Molecular Dynamics (MD), and Phase Field Modeling (PFM) are predominantly used.
        4,000원
        2.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to predict the process window of laser powder bed fusion (LPBF) for printing metallic components, the calculation of volumetric energy density (VED) has been widely calculated for controlling process parameters. However, because it is assumed that the process parameters contribute equally to heat input, the VED still has limitation for predicting the process window of LPBF-processed materials. In this study, an explainable machine learning (xML) approach was adopted to predict and understand the contribution of each process parameter to defect evolution in Ti alloys in the LPBF process. Various ML models were trained, and the Shapley additive explanation method was adopted to quantify the importance of each process parameter. This study can offer effective guidelines for fine-tuning process parameters to fabricate high-quality products using LPBF.
        4,000원
        3.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBFprocessed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.
        4,000원
        4.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.
        4,000원
        5.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloy-based additive manufacturing (AM) has emerged as a popular manufacturing process for the fabrication of complex parts in the automotive and aerospace industries. The addition of an inoculant to aluminum alloy powder has been demonstrated to effectively reduce cracking by promoting the formation of equiaxed grains. However, the optimization of the AM process parameters remains challenging owing to their variability. In this study, the response surface methodology (RSM) was used to predict the crack density of AM-processed Al alloy samples. RSM was performed by setting the process parameters and equiaxed grain ratio, which influence crack propagation, as independent variables and designating crack density as a response variable. The RSM-based quadratic polynomial models for crack-density prediction were found to be highly accurate. The relationship among the process parameters, crack density, and equiaxed grain fraction was also investigated using RSM. The findings of this study highlight the efficacy of RSM as a reliable approach for optimizing the properties of AM-processed parts with limited experimental data. These results can contribute to the development of robust AM processing strategies for the fabrication of highquality Al alloy components for various applications.
        4,000원
        6.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Among the Additive Manufacturing (AM) technologies, the Binder-Jetting printing technology is a method of spraying an adhesive on the surface of powder and laminate layer by layer. Recently, this technique has become a major issue in the production of large casting products such as ship-building, custom vehicles and so on. In this study, we performed research to make actual mold castings and increase mechanical property by using special sand and water-based binders. For use as a mold, it has a strength of more than 3MPa and permeability. Various experiments were carried out to obtain suitable them. The major process parameters were binder jetting volume, binder types, layer thickness and heat treatment condition. As a result of this study, the binder drop quantity was measured to be about 60 pico-liter, layer thickness was 100μm and the heat treatment condition was measured about 1,000℃ and compressive strength were measured to be more than 5MPa. The optimum condition of this experiment was established through actual casting of aluminum. The equipment used in this study was a Freeforms T400 model (SFS Co., Ltd.), and the printing area of 420 * 300 * 250mm and resolution of 600dpi can be realized.
        4,000원
        7.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In additive manufacturing, the flowability of feedstock particles determines the quality of the parts that are affected by different parameters, including the chemistry and morphology of the powders and particle size distribution. In this study, the microstructures and flowabilities of gas-atomized heat-resistant alloys for additive manufacturing applications are investigated. A KHR45A alloy powder with a composition of Fe-30Cr-40Mn-1.8Nb (wt.%) is fabricated using gas atomization process. The microstructure and effect of powder chemistry and morphology on the flow behavior are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and revolution powder analysis. The results reveal the formation of spherical particles composed of single-phase FCC dendritic structures after gas atomization. SEM observations show variations in the microstructures of the powder particles with different size distributions. Elemental distribution maps, line scans, and high-resolution XPS results indicate the presence of a Si-rich oxide accompanied by Fe, Cr, and Nb metal oxides in the outer layer of the powders. The flowability behavior is found to be induced by the particle size distribution, which can be attributed to the interparticle interactions and friction of particles with different sizes.
        4,000원
        8.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the CFRP(Carbon Fiber Reinforced Plastic) parts were printed and cut in a large-scale additive and subtractive hybrid manufacturing system. A method to increase the strength and durability of a product by identifying the interlayer adhesion during the printing process of a large-scale additive manufacturing hybrid system was investigated. According to the printing conditions(CF content, deposition temperature, compaction process), the specimen was printed and cut to determine the tensile strength in the printing direction. As a result of the experiment, the highest tensile strength was shown when ABS-CF 20wt.% Compound was printed at 230℃ extrusion temperature, and the higher the CF content of the material, the lower the tensile strength. As a result of observing the inside of the test piece through an optical microscope, a large number of voids were kept inside the test piece. To remove voids generated inside the test piece, a compaction process was applied to the additive manufacturing hybrid system to prepare a test piece. As a result, void size decreased, and the strength of the part showed a tendency to increase. It is thought that additive manufacturing with high tensile strength can be obtained through studies on the optimization of deposition conditions in additive manufacturing hybrid systems.
        4,000원
        9.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Additive manufacturing is a new approach to design and production. This applies in particular to processes such as repair and rework of selected components. Additive manufacturing can produce almost any shape, and from an MRO part perspective, additive manufacturing offers tremendous advantages. The special feature of additive manufacturing is that it is particularly economical for small-volume production as the number of units is irrelevant compared to the existing manufacturing process. The purpose of this study was started from the MRO point of view, and it Identify changes and respond to the Blisk It is a study on the effect of changing the conditions on the path of the toolpath and the CAM during additive manufacturing using CAM after finding suitable conditions. metal powder.The metal powder withstands various corrosive environments and age hardening occurs very slowly. Inconel 718, which can be used in various applications such as nuclear facility-related parts, aerospace, oil facilities, turbines, and valves, was used. This is SUS 316L with good high temperature strength. The variable of the laser used in the study is the laser power, and the variables on the CAM are Operation, Stepover, Pattern, etc. In the relation between laser power and feed, when feed is specified as 500mm/min, laser power of 700W was most suitable. As for the conditions on NX CAM, ADDITIVE PROFILE Stepover was 0.8mm for Operation, and Infills and Finish for Pattern. When stacking, each layer should be overlapped with the result. Therefore, the stepover should be smaller than the laser spot size and reprocessing should be done in terms of repair, so infills and finish were applied to work larger than the actual product shape.
        4,000원
        10.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, considerable attention has been given to nickel-based superalloys used in additive manufacturing. However, additive manufacturing is limited by a slow build rate in obtaining optimal densities. In this study, optimal volumetric energy density (VED) was calculated using optimal process parameters of IN718 provided by additive manufacturing of laser powder-bed fusion. The laser power and scan speed were controlled using the same ratio to maintain the optimal VED and achieve a fast build rate. Cube samples were manufactured using seven process parameters, including an optimal process parameter. Analysis was conducted based on changes in density and melt-pool morphology. At a low laser power and scan speed, the energy applied to the powder bed was proportional to and not . At a high laser power and scan speed, a curved track was formed due to Plateau-Rayleigh instability. However, a wide melt-pool shape and continuous track were formed, which did not significantly affect the density. We were able to verify the validity of the VED formula and succeeded in achieving a 75% higher build rate than that of the optimal parameter, with a slight decrease in density and hardness.
        4,000원
        11.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        AlSi10Mg alloys are being actively studied through additive manufacturing for application in the automobile and aerospace industries because of their excellent mechanical properties. To obtain a consistently high quality product through additive manufacturing, studying the flowability and spreadability of the metal powder is necessary. AlSi10Mg powder easily forms an oxide film on the powder surface and has hydrophilic properties, making it vulnerable to moisture. Therefore, in this study, AlSi10Mg powder was hydrophobically modified through silane surface treatment to improve the flowability and spreadability by reducing the effects of moisture. The improved flowability according to the number of silane surface treatments was confirmed using a Carney flowmeter. In addition, to confirm the effects of improved spreadability, the powder prior to surface treatment and that subjected to surface treatment four times were measured and compared using s self-designed recoating tester. The results of this study confirmed the improved flowability and spreadability based on the modified metal powder from hydrophilic to hydrophobic for obtaining a highquality additive manufacturing product.
        4,000원
        12.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of the laser beam diameter on the microstructure and hardness of 17-4 PH stainless steel manufactured via the directed energy deposition process is investigated. The pore size and area fraction are much lower using a laser beam diameter of 1.0 mm compared with those observed using a laser beam diameter of 1.8 mm. Additionally, using a relatively larger beam diameter results in pores in the form of incomplete melting. Martensite and retained austenite are observed under both conditions. A smaller width of the weld track and overlapping area are observed in the sample fabricated with a 1.0 mm beam diameter. This difference appears to be mainly caused by the energy density based on the variation in the beam diameter. The sample prepared with a beam diameter of 1.0 mm had a higher hardness near the substrate than that prepared with a 1.8 mm beam diameter, which may be influenced by the degree of melt mixing between the 17-4 PH metal powder and carbon steel substrate.
        4,000원
        13.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The process optimization of directed energy deposition (DED) has become imperative in the manufacture of reliable products. However, an energy-density-based approach without a sufficient powder feed rate hinders the attainment of an appropriate processing window for DED-processed materials. Optimizing the processing of DEDprocessed Ti-6Al- 4V alloys using energy per unit area (Eeff) and powder deposition density (PDDeff) as parameters helps overcome this problem in the present work. The experimental results show a lack of fusion, complete melting, and overmelting regions, which can be differentiated using energy per unit mass as a measure. Moreover, the optimized processing window (Eeff = 44~47 J/mm2 and PDDeff = 0.002~0.0025 g/mm2) is located within the complete melting region. This result shows that the Eeff and PDDeff-based processing optimization methodology is effective for estimating the properties of DED-processed materials.
        4,000원
        14.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Additive manufacturing technology, 3D printing, has been applied to various industrial fields. This production method is a production method with less material, cost and time savings, and less restrictions in shape, and is also making a leap forward in the field of eco-friendly product production. In particular, FDM (fused depositon modeling) method of extrusion lamination manufacturing is widely applied in products and medical fields. And as an alternative to mold manufacturing, it is widely used in manufacturing plastic products and parts. Therefore, this paper quantitatively and qualitatively analyzes the mechanical properties according to the processing factors of the specimen through the processing of the ABS tensile specimen printed by the FDM type 3D printer and derives the optimum value.
        4,000원
        16.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        3D printing technology is a processing technology in which 3D structures are formed by fabricating multiple 2D layers of materials based on 3D designed digital data and stacking them layer by layer. Although layers are stacked using inkjet printing to release various materials, it is still rare for research to successfully form a product as an additive manufacture of multi-materials. In this study, dispersion conditions are optimized by adding a dispersant to an acrylic monomer suitable for inkjet printing using Co3O4 and Al2O3. 3D structures having continuous composition composed of a different ceramic material are manufactured by printing using two UV curable ceramic inks whose optimization is advanced. After the heat treatment, the produced structure is checked for the formation and color of the desired crystals by comparing the crystalline analysis according to the characteristics of each part of the structure with ceramic pigments made by solid phase synthesis method.
        4,000원
        17.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to compare the mechanical properties of NAB (Ni-Al-Bronze) material manufactured using WAAM (wire arc additive manufacturing) technology and cast NAB that has been used. Two types of mechanical property test pieces were collected from the deposited bulk NAB material according to the direction of deposition, and compared with each other. As a result of mechanical property evaluation, the deposited NAB exhibited anisotropy according to the direction of deposition, and showed high tensile strength, hardness, and shock absorption in the longitudinal direction of the welding line.
        4,000원
        18.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Additive manufacturing technology is recognized as an optimal technology for mass-customized distributed production because it can yield products with high design freedom by applying an automated production system. However, the introduction of novel technologies to the additive manufacturing industry is generally delayed, and technology uncertainty has been pointed out as one of the main causes. This paper presents the results of the research and analysis of current standardization trends that are related to additive manufacturing by examining the hierarchical structure of the quality system along with the various industry and evaluation standards. Consequently, it was confirmed that the currently unfolding standardization does not sufficiently reflect the characteristics of additive manufacturing technology, and rather can become a barrier to entry for market participants or an element that suppresses the lateral shearing ability of additive manufacturing technology.
        4,000원
        19.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The enamel powders used traditionally in Korea are produced by a ball-milling process. Because of their irregular shapes, enamel powders exhibit poor flowability. Therefore, polygonal enamel powders are only used for handmade cloisonné crafts. In order to industrialize or automate the process of cloisonné crafts, it is essential to control the size and shape of the powder. In this study, the flowability of the enamel powders was improved using the spheroidization process, which employs the RF plasma treatment. In addition, a simple grid structure and logo were successfully produced using the additive manufacturing process (powder bed fusion), which utilizes spherical enamel powders. The additive manufacturing technology of spherical enamel powders is expected to be widely used in the field of cloisonné crafting in the future.
        4,000원
        20.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, an explicit finite element analysis technique is introduced to analyze the thermal stress fields present in the additive manufacturing process. To this purpose, a finite element matrix formulation is derived from the equations of motion and continuity. The developed code, NET3D, is then applied to various sample problems including thermal stress development. The application of heat to an inclusion from an external source establishes an initial temperature from which heat flows to the surrounding body in the sample problems. The development of thermal stress due to the mismatch between the thermal strains is analyzed. As mass scaling can be used to shorten the computation time of explicit analysis, a mass scaling of 108 is employed here, which yields almost identical results to the quasi-static results.
        4,000원
        1 2 3