검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 64

        21.
        2018.05 서비스 종료(열람 제한)
        하수처리시설의 방류수 수질기준은 계속적으로 강화되고 있으며, 이러한 기준을 충족시키기 위해 다양한 공법을 적용하려는 노력들이 증가하고 있다. 지금까지는 질소, 인 처리를 목적으로 활성슬러지 공법을 많이 적용해왔지만, 활성슬러지 공법의 경우 용존산소 및 온도 유지, 미생물의 생장에 필요한 탄소원이 부족할 경우 추가적인 메탄올 공급의 필요 등과 같은 문제점들을 가지고 있어 대안책이 필요한 상황이다. 따라서 본 연구에서는 응집제 주입을 통해 유기물 뿐만 아니라 질소, 인 등을 제거하여 활성슬러지 공법을 대체할 수 있는 응집-침전 1차 처리(Chemically enhanced primary treatment, CEPT)의 최적화 과정을 진행하였으며, 추가적으로 CEPT 슬러지를 이용하여 혐기성 소화를 진행하였을 때 메탄 생성효율에는 어떠한 영향을 미치는지 확인하고자 하였다. 먼저 문헌조사를 통해 총 7개의 후보군(FeCl2, FeCl3, FeSO4, PACl, Al2(SO4)3, 키토산, glucan)을 선정하였으며, jar-test를 통해 응집제로써의 적용가능성 및 최적 주입량을 확인하였다. Jar-test의 경우 광주 제 1하수처리장으로 들어오는 하수 원수 500ml를 이용하여 진행하였으며, 급속교반(150rpm, 1분), 완속교반(40rpm, 10분), 침전(10분) 순으로 진행한 뒤 상징액을 통해 저감효과를 확인하였다. 90% 이상의 탁도 저감효과를 보인 FeCl3, PACl, Al2(SO4)3 대상으로 CEPT 슬러지를 제작하여 혐기성 소화를 진행하였다. jar-test에서는 PACl이 응집제 주입량 대비 가장 높은 탁도저감효과를 보인 반면, 혐기성 소화 공정에서는 PACl을 이용하여 제작한 CEPT 슬러지의 메탄 발생효율이 가장 낮고, FeCl3를 주입한 경우에 가장 메탄발생효율이 높은 것으로 나타났다. 이러한 결과는 PACl의 Al 성분이 미생물의 생장을 저해한 반면, FeCl3의 경우에는 Fe3+가 Fe2+로 환원되는 과정에서 유기물로부터 H+를 받아 유기물의 분해속도를 촉진시켰기 때문인 것으로 추측된다.
        22.
        2018.05 서비스 종료(열람 제한)
        가죽제품 제조 산업으로부터 발생되는 피혁폐기물의 양은 투입되는 원료 가죽의 약 50%를 차지하는 것으로 알려져 있다. 그러나 이들 피혁폐기물은 적절한 처리 방법이 개발되지 않아 대부분 매립이나 소각을 통해 처리되고 있다. 특히, 매립이나 소각을 통한 처리는 단가가 높아 관련 산업의 경제성을 악화시키고 고형폐기물의 친환경적 처리 관점에서 문제점이 제기되고 있는 실정이다. 최근 화석연료를 대체하기 위한 신규에너지원의 중요성이 높아짐에 따라, 폐기물을 이용한 에너지화에 많은 연구가 진행되고 있으며, 피혁폐기물은 주로 단백질과 지질로 구성되어 있는 특성으로 인해 혐기성소화를 통한 바이오가스 생산이 가능한 것으로 알려져 있다. 그러나 일반적으로 알려져 있는 혐기성소화 공정의 최적 C/N 비 (20-30)를 고려할 때, 피혁폐기물의 높은 C/N비 (약 35)는 공정의 제한요소가 될 수 있다. 본 연구에서는 피혁폐기물과 음폐수를 통합하여 혐기성소화를 실시함으로써 기질의 C/N 비 조절이 혐기성소화 효율에 미치는 영향을 관찰하였다. 기질의 C/N 비 조절을 통한 혐기성소화 효율의 변화는 BMP (Biochemical methane potential) test를 약 40일간 진행하였으며, 바이오가스 발생량을 비교하였다. 실험은 경기도 동두천시에 위치한 가죽제품 제조업체로부터 수거된 pelt scrap과 양주시에 위치한 음식물쓰레기 자원화시설에서 발생되는 음폐수를 각각 채취하여 사용하였다. 개별 기질의 C/N 비는 피혁폐기물이 34.1, 음폐수가 13.5로 확인되었으며, 이들의 무게에 따른 혼합비를 조절하여 통합 혐기성소화 기질의 C/N 비를 20, 25, 30으로 맞춰 실험을 진행하였다. 실험결과 기질을 통합하여 C/N 비를 조절한 소화 조건에서 개별 기질의 단독소화 조건보다 많은 바이오가스 생산량이 관찰되었으며, C/N 비 20에서 바이오가스 생산량이 높은 것으로 나타났다. 이는 통합 기질의 C/N 비 조절효과와 함께 피혁폐기물에 비해 생분해도가 높은 음폐수 함량이 기질의 C/N 비가 낮을수록 더 많이 포함되었기 때문으로 판단된다.
        23.
        2018.05 서비스 종료(열람 제한)
        2005년부터 음식물류폐기물의 직매립이 금지됨에 따라 이에 따른 처리수단으로 자원화(민간 사료화, 공공퇴비화 위주)시설을 많이 설치하여 운영하였다. 하지만 음식물류폐기물을 이용하여 생산된 사료와 퇴비에 대한 사용자들의 부정적인 인식으로, 생산된 부산물이 다시 폐기물로 되는 악순환이 지속되어 왔다. 또한 런던협약에 의해서 2012, 2013, 2014년에 하수슬러지, 음폐수, 축산분뇨 및 하수슬러지 등 유기성폐기물의 해양배출이 금지됨에 따라 고농도의 유기물을 육상에서 처리해야 했기 때문에 부수적으로 바이오가스를 얻을 수 있는 혐기성 소화에 많은 관심을 갖게 되었다. 그러나 많은 지자체에서 혐기성 소화의 이해와 운전기술의 부족으로 시설 운영에 실패 또는 어려움을 겪고 있는 실정이다. 이러한 문제를 해결하기 위해서, 음식물류폐기물과 음폐수의 혼합소화 운전을 하고 있는 대전광역시 내 바이오 에너지화 시설의 혐기성 소화 효율을 실험적으로 분석하고 향후 유기성폐기물의 혐기소화를 이용한 처리 가능성을 살펴보았다. 음식물류폐기물과 음폐수의 총 반입량은 평균 353.17 ton/day이며 그 중 296.47 ton/day이 혐기성 소화조에 투입되었으며 나머지 56.7 ton/day는 매립처리하는 것으로 측정되었다. 시설 내 중간 저장조, 혐기성 소화조, 안정화조의 경우 평균 TS 제거 표율은 72.5%, VS는 80.2%로 측정되었으며 평균 바이오 가스 발생량은 26,450 Nm3/day, 이중 CH4 함량은 63.83%로 측정되었다. VS당 바이오 가스 및 CH4 발생량은 0.77 Nm3-biogas/kg-VS, 0.49 Nm3-CH4/kg-VS로 측정되었으며, VS/TS 비는 중간 저장조, 혐기성 소화조, 안정화조에서 각각 87.0%, 72.5%, 62.5%로 나타났다. 이와 같은 결과를 기반으로, 바이오 에너지화 시설 내 혐기성 소화조 및 안정화조에서 메탄생성세균이 활발하게 성장하고 있어 소화조 효율이 높은 것으로 판단되었다.
        24.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        Since 2005 the landfilling of food waste has been prohibited, and many recycling facilities (private, domestic, animalfeed conversion, public composting) have been constructed and operated as waste-treatment centers. However, due to the negative attitude of users on the domestic animal feed and compost produced from food waste, the byproducts of waste have created a vicious cycle, needing treatment themselves. In addition, the London Convention prohibited the discharge of organic waste such as sewage sludge into the ocean in 2012 and of food-waste leachate in 2013. An alternative to landfilling and incineration is to treat biomass with anaerobic digestion. However, the anaerobic-digestion efficiency of the Daejeon City bioenergy facility, which has adopted a mixed digestion process of food waste and food waste leachate, has not been reproduced in other municipalities due to a misunderstanding of anaerobic digestion and a lack of operating skill. Thus, the anaerobic-digestion efficiency of the bioenergy facility in Deajeon is analyzed, and it provides basic information for the anaerobic co-digestion of organic wastes.
        25.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Biogas is a gaseous mixture produced from the microbial digestion of organic materials in the absence of oxygen. Raw biogas, depending upon organic materials, digestion time and process conditions, contains about 45 ~ 75% methane, 30 ~ 50% carbon dioxide, 0.1% hydrogen sulfide gas, and a fractional percentage of water vapor. To achieve the standard composition of the biogas, treatment techniques like absorption or membrane separation are performed for the resourcing of biogas. In this paper, the experiments are performed using biogas produced in an environmental digestion facility for food waste. The membrane module was imported from overseas, its membrane process has achieved up to 98% of the methane and 99% of the carbon dioxide separated, and it has manufactured and stored pressurized carbon dioxide. The effects of the feed pressures on the separation of CO2-CH4 by the membrane are investigated. A chelate was utilized to purify the methane from the H2S concentration of 0.1%.
        26.
        2017.11 서비스 종료(열람 제한)
        현재 국내에서 발생하는 유기성폐기물은 에너지화 정책에 따라 육상처리의 일환으로 혐기소화를 통한 바이오가스화 시설에서 처리 및 에너지원으로 전환되고 있다. 이러한 유기성폐기물 중 음식물쓰레기는 처리 단가가 높고, 바이오가스 회수 잠재력 또한 높아 바이오가스화 시설의 경제성을 높여줄 유용한 폐자원으로 여겨지고 있다. 하지만 국내에서 발생하는 음식물쓰레기의 평균 고형물함량(TS)은 18~20% 수준으로 혐기소화를 통한 바이오가스화를 위해서는 전처리가 필수적이다. 또한, 음식물쓰레기는 구성성분이 다양할 뿐만아니라 섬유질도 다량 포함하고 있어 혐기소화를 통해 바이오가스로 전환하기 위해서는 보통 30일 전후의 소화기간을 필요로 하고 있고, 특히 파쇄/선별의 단순 물리적 전처리만 거친 음식물쓰레기의 경우에는 30일 이상의 혐기소화 기간이 필요한 것으로 알려져 있다. 이에 본 연구에서는 사전 연구를 통해 도출된 음식물쓰레기 열가수분해 운전조건을 적용해 습식 혐기소화 반응조에 적합하도록 U원 구내 식당에서 발생한 음식물쓰레기를 전처리하였고, 이렇게 얻어진 음식물쓰레기 가용화물을 실험실 규모의 중온 단상 혐기소화 반응조에 투입해 일반적인 중온 이상습식 혐기소화 체류시간(35일)의 절반 수준인 18일의 체류시간으로 운전하는 조건에서 바이오가스 수율 및 반응조 안정성 등을 평가하고자 하였다.
        27.
        2017.07 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to investigate the effects of inoculum and carbon sources on anaerobic digestion characteristics. The treatments were combinations of inoculum (digestate of cattle manure and rumen fluid) with carbon sources (starch, cellulose, and xylan). Anaerobic digestion was performed in triplicate at 37°C for 18 days at 100 rpm. Sampling was performed at 0, 1, 2, 3, 4, 5, 7, 9, 12, 15, and 18 days to measure pH, ammonia-N, volatile solids reduction, the cumulative methane content, and the cumulative methane production. There was a significant difference in methane content depending on the carbon source and there was a significant difference in pH, ammonia-N, methane production, and methane content depending on the inoculum (P < 0.05). The results of methane production were higher in the digestate of cattle manure treatment than in the rumen fluid treatment (P < 0.05). In this study, different digestive patterns depending on the type of carbon source could be used as basic research data to set the hydraulic residence time of anaerobic digestion facilities. In addition, the use of ruminal fluid as an inoculum may help accelerate the hydrolysis and acid production steps.
        28.
        2017.05 서비스 종료(열람 제한)
        혐기성소화는 폐기물처리뿐만 아니라 대체에너지인 메탄가스가 발생하여 에너지를 회수할 수 있다는 장점을 가지고 있다. 혐기성소화 효율을 높이기 위해 미량중금속을 투입하기도 한다. 이는 대표적인 유기성 폐기물인 음식물류폐기물에 미량중금속의 함량이 낮고, 미량중금속이 미생물의 생장에 중요한 역할을 하기 때문이다. 이에 본 연구에서는 미량중금속의 함량이 낮고 대표적인 유기성폐기물인 음식물류폐기물을 기질로 사용하여 혐기성소화를 진행하였고 식종은 음식물류폐기물과 축산폐수를 병합처리하는 혐기성소화조 소화슬러지를 사용하였다. 사용한 시료는 A시의 폐기물자원화시설에서 채취하였으며 음식물류폐기물은 2 mm, 소화슬러지는 0.85 mm 채로 걸러서 사용하였다. Ni는 메탄생성미생물의 성장에 필수적으로 필요하고 아세트산의 이용효율을 증가시키는 효과가 있어 대상 미량중금속을 Ni로 하였다. Ni 투입량은 0, 0.1, 1, 10, 50 mg/L로 변화를 주었으며 소화온도는 중온(35℃)과 고온(55℃)로 실험을 진행하였다. 실험은 음식물류폐기물과 소화슬러지를 휘발성고형물(volatile solid, VS) 기준으로 1:1 비율로 섞어 500 mL serum bottle에 300 mL를 채워 진행하였고, 반응기에 농도별로 Ni를 투입하였다. 이 후 질소를 이용하여 2분간 퍼지하고, 고무마개와 알루미늄씰(aluminium seal)을 이용하여 밀봉하였다. 제작된 반응기를 항온 진탕배양기(VS-8480, VS-8480SF, KR)에서 중온 및 고온에서 소화를 진행하였다. 발생하는 가스는 기압계(Keller LEO-2, Germany)를 이용하여 반응기 내 압력을 측정하여 발생량을 계산하는 방식을 이용하였다. 본 연구는 아직 진행 중에 있어 결과는 추후 학회에서 발표할 예정이다.
        29.
        2017.04 KCI 등재 서비스 종료(열람 제한)
        This research examined the possibility of the temperature maintenance of an anaerobic digestion reactor without external heating by the oxidation heat generated in an aerobic fermenter, considering the difficulties of anaerobic digestion because of the winter season in Korea. For the experiment, an anaerobic digestion chamber was installed inside, the device with aerobic fermentation installed outside was used, the anaerobic digestion chamber was covered, and the raw material was used in the perspective of handling livestock excretion and food waste. During 230 days of operation in total, normal operation was started after about 120 days, and during that operating time, the temperature change, degradation behavior of organisms, and digestion yield were analyzed; the results are shown below. In the situation excluding the aerobic reactor in the summer season, maintaining the temperature of the digestion chamber at 30°C was possible through heat storage within the house, but the temperature decreased to about 20°C because of the outside temperature in the winter season, and maintaining the temperature of the digestion chamber at 25°C was possible as long as the aerobic fermentation chamber maintained its temperature of more than 50°C. Regarding the results for the effects of the inside and outside temperature of the house on the aerobic reactor chamber temperature, a significant effect was not examined, and it was identified that the aerobic reactor temperature relied on the degree of aerobic microorganism vitalization. When using a hot-water system with solar heat, the possibility of usage as complementary energy in the unstable winter season was checked. Even in the winter season, maintaining the temperature of the anaerobic digestion chamber without external heating was possible, and even during the time of operation, although the temperature changed from 25°C to 38°C, methane gas was stably produced.
        30.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Livestock manure treatments have become a more serious problem because massive environmental pollutions such as green and red tides caused by non-point pollution sources from livestock manures have emerged as a serious social issue. In addition, more food wastes are being produced due to population growth and increased income level. Since the London Convention has banned the ocean dumping of wastes, some other waste treatment methods for land disposal had to be developed and applied. At the same time, researches have been conducted to develop alternative energy sources from various types of wastes. As a result, anaerobic digestion as a waste treatment method has become an attractive solution. In this study has three objectives: first, to identify the physical properties of the mixture of livestock wastewater and food waste when combining food waste treatment with the conventional livestock manure treatment based on anaerobic mesophilic digestion; second, to find the ideal ratio of waste mixture that could maximize the collection efficiency of methane (CH4) from the anaerobic digestion process; and third, to promote CH4 production by comparing the biodegradability. As a result of comparing the reactors R1, R2, and R3, each containing a mixture of food waste and livestock manure at the ratio of 5:5, 7:3, and 3:7, respectively, R2 showed the optimum treatment efficiencies for the removal of Total Solids (TS) and Volatile Solids (VS), CH4 production, and biodegradability.
        31.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to investigate and analyze continuous operation of food waste resources at Dongdaemun Environmental Resources Center and to improve the overall operation of the dry anaerobic digester facility. Korean domestic food wastes consist of 18% total solid (TS) content but food waste is difficult to utilize for dry anaerobic digestion. Other operational trouble-shooting resulted from the inherent design, construction and operation of such a biomass generation facility based on 100% utilization of dewatered cake with 35% TS concentration as feedstock, causing the accumulation of unwanted solid residues. A materials flow analysis obtained from actual operation of the anaerobic digestion facility revealed that the organic material loading rate (OLR) and its residence time were 8.3 kg-VS/m3·day and 18.3 days, which adversely affected stable operation. The OLR was occasionally > 15,000 mg/L organic acid concentration and the facility shut down. Such anomalies drastically reduced biogas production and increased organic matter loading in the wastewater, which exceeded the legally allowed concentration limit. Operation of this facility has been normalized to the targeted facility capacity of 98 m3/day based on the results of this study.
        32.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        Biogas has been used to remove water content and hydrogen sulfide (H2S). Removing water requires a low temperature process; thus, our study investigated removing H2S under high pressure and low temperature. Several experiments were conducted to investigate removal of H2S from a biogas stream by optimizing chemical absorption and the chemical reaction with a Fe/EDTA solution. The roles of Fe/EDTA were studied to enhance removal efficiency of H2S due to oxidization by Fe+3/EDTA. The objective of this study was to explore the feasibility of enhancing toxic gas treatment in a biogas facility. A biogas purification strategy affords many advantages. For example, the process can be performed under mild environmental conditions and at low temperature, and it removes H2S selectively. As the Fe-EDTA concentration increased, the H2S conversion rate increased because the Fe-EDTA complex was highly stable. The optimal pH to stabilize the chemical complex during oxidation of H2S was 9.0.
        33.
        2016.11 서비스 종료(열람 제한)
        우리나라는 4계절이 뚜렷하여 안정적인 중온소화를 진행하기에 환경적 어려움이 있다. 혐기성 소화조의 안정적인 소화를 위하여 가온 에너지는 필수적인 요소이다. 이를 위해 본 연구에서는 이러한 환경에 적합한 소형 혐기성 시설의 개발을 위하여 고농도 유기성 폐기물인 돈분뇨와 음식물류폐기물을 전처리 과정 없이 고액분리만을 통하여 액상의 고농도유기물만을 혐기성소화조에서 에너지원인 바이오가스를 생산하는 Pilot Plant의 성능과 소화효율을 분석하였다. 혐기성 소화조의 가온을 위하여 겉에는 호기성 소화조를 설치하여 호기 발효열을 혐기성 소화 가온 에너지로 이용 가능하도록 설계하였다. 이 호기성 소화조에서는 음식물류폐기물을 이용, 호기성 분해를 통해 퇴비를 생산하였으며, 이 과정 중 발생한 분해열(최대 75℃)을 이용, 혐기성 소화조를 가온하였다. 혐기성 소화의 성분 변화에 따른 바이오가스를 분석하기 위하여 혐기성소화조에 투입되는 유기물(VS)농도, 원료배합(돈분뇨 중 분성분이 30%, 뇨성분이 70%) 등 운전조건의 변화에 따른 유기물(VS) 제거율, CODcr 제거율, 바이오가스 생산량 및 메탄농도, 유기물용적부하에 따른 바이오가스 발생량 등을 분석 하였다. 음식물류 폐기물과 돈분뇨 혼합비에 따라 CASE 1, CASE 2, CASE 3로 분류하였으며, CASE 1의 비율은 음식물류 폐기물 8kg과 돈분뇨 20L, CASE 2 음식물류 폐기물 10kg과 돈분뇨 20L로 진행하였다. 분석결과 호기성 발효조의 평균 온도는 계절에 관계없이 50℃~70℃로 나타났으며, 호기성 발효조의 발효열이 높을수록 혐기성 소화조의 온도 또한 증가하는 경향이 나타났다. 이 결과 혐기성 소화조의 온도는 평균적으로 38℃로 중온소화가 가능한 것으로 확인되었다. 혐기 소화의 경우 투입원료의 유기물(VS)량에 따른 바이오가스 발생량은 CASE1에서 유기물(VS)은 평균 6.09%으로 분석되었으며, 이에 따른 바이오가스 발생량은 0.29~0.31㎥/day로 나타났다. CASE 2는 유기물(VS)평균 농도가 7.7%, 바이오가스 발생량이 0.325㎥/day로 나타났다. CASE1, 2 각각의 CODcr, 유기물(VS) 평균 제거율은 CASE 1이 56%, 76.61%, CASE2가 62%, 81.86%로 분석되었다. 메탄 함유량 또한 60~77%로 측정되어 연료로써의 가치가 확인되었다. 본 연구를 통하여 호기성 산화열을 혐기성 소화의 가온 에너지로서 사용하는 방식의 상용화 가능성을 확인할 수 있었으며, 현재 운영하는 혐기성 소화 시설만이 아닌 마을단위의 유기성 폐기물을 처리할 수 있는 소규모 시설로서도 운영이 가능할 것으로 보이며, 이에 따라 좀 더 효율적인 유기성 폐기물의 처리를 가능하게 할 수 있을 것으로 기대된다.
        34.
        2016.11 서비스 종료(열람 제한)
        육류소비는 가축사육의 비약적인 증가를 초래함과 동시에 조류독감과 구제역 등의 전염병 발병으로 인해 오염된 닭, 오리, 소, 돼지 등이 대량 폐사되는 사례가 늘어나고 있다. 이로 인해 폐사축을 처리 및 처분하여 매몰지를 소멸화 하는 방법들이 강구되고 있다. 그 중 렌더링공정을 이용하여 고온 고압 하에서 폐사축을 전처리하여 발생된 지방을 전이에스테르화하여 바이오디젤을 생산하는 방법이 주목 받고 있는데, 이 역시 바이오디젤을 생산할 수 있는 반면 글리세롤이 폐기물로 발생된다는 단점이 있다. 본 연구는 이 글리세롤을 혐기성 소화의 탄소원과 에너지원으로 사용하여 바이오가스로 전환하는 가능성을 평가하기위해 생화학적 메탄 포텐셜(biochemical methane potential, BMP)테스트를 시행하였다. 반응조 COD농도를 1g으로 설정하고 섭씨 37도 배양기에서 혐기성 입상슬러지를 식종균으로 14일 동안 바이오가스 발생을 모니터링한 결과, 글리세롤로 부터 약 50~58 mL/g COD의 메탄수율 획득이 가능함을 밝혔다. 또한 글리세롤의 바이오가스 전환이 7일 이내에 종료되는 것으로 나타났으며, AI 폐사축으로부터 바이오디젤을 생산 후 나온 부산물인 글리세롤을 자원화하는 혐기성소화 시 메탄생성속도는 7.0~8.3 mL/gCOD・d로 나타났다.
        35.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        Anaerobic mesophilic batch tests of food waste and food waste leachate collected from food waste treatment facility were carried out to evaluate their ultimate biodegradability and two distinctive decay rate coefficients (k1 and k2) with their corresponding degradable substrate fractions (S1 and S2), respectively. Each 3 liter batch reactor was operated for more than 60 days at substrate to inoculum ratio (S/I) of 0.5 as an initial total volatile solids (TVS) mass basis. Result of Ultimate biodegradability of 74 ~ 83% for food waste and 85 ~ 90% for food waste leachate were obtained respectively. The readily biodegradable fraction of 85 ~ 93% (S1) of food waste Biodegradable Volatile Solids (BVS, So) degraded within the initial 15 days with a range of of 0.151 ~ 0.168 day−1, whereas the rest slowly biodegradable fraction (S2) of BVS degraded for more than 53 days with the long term batch decay rate coefficients of 0.009 ~ 0.010 day−1. For the food waste leachate, the readily biodegradable portion (S1) appeared to be 92 ~ 94% of BVS (So), which degrades with of 0.172 ~ 0.206 day−1 for an initial 15 days. Its corresponding long term batch decay rate coefficients were 0.005 ~ 0.009 day−1. It is recommended that the hydraulic retention times of mesophilic anaerobic digesters be 16 days for the food waste and 15 days for the food waste leachate, respectively. However a safety factor should be considered when designing a full scale plant.
        36.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the characteristic and efficiency of anaerobic digestion (AD) of various organic wastes, and to find a way to enhance the efficiency of AD. Ten types of organic wastes including slaughterhouse waste (SHW), agricultural by-products (AB), animal manure (AM), sewage sludge, and food waste (FW) were selected. Elementary analysis was carried out to confirm the effect of C/N ratio on AD. Elementary analysis of the AB of maize showed the highest C/N ratio of 42.55. The lowest C/N ratio of 3.41 and 3.46, respectively, appeared from the SHW of the blood from cattle and swine. The cattle rumen content of SHW had a C/N ratio of 19.2, which was included at range of optimum C/N ratio, and AM showed a low C/N ratio because of the lack of a carbon source. The AB of beets had the highest biogas yield of 0.81 m3/kgVS, which was measured by the BMP test. Biodegradability was also calculated based on the BMP test result. FW was found to have the highest biodegradability of 92.14%. However, cattle rumen contents had low biodegradability (34.02%) because their substrate material consists of fibroid, while AM had the lowest biodegradability (15.34%) because of its low C/N ratio.
        37.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        A bioelectrochemical anaerobic digester for food waste was developed by installing an anode (−250 mV vs. Ag/AgCl) and a cathode (−550 mV vs. Ag/AgCl) inside a conventional lab-scale anaerobic digester. The performance of the bioelectrochemical anaerobic digester was investigated at different organic loading rates of 0.70-4.25 g VS/L.d. The bioelectrochemical anaerobic digester was rapidly stabilized within 25 days after start up, and at an organic loading rate of less than 1.97 g VS/L.d., state variables such as pH (7.0-7.8) and alkalinity (10-12 g/L as CaCO3) were very stable. The volatile fatty acids were maintained at 400-500 mg HAc/L with their main component being acetic acid (80%). At an organic loading rate of 1.97 g VS/L.d, the performance was significantly high in terms of the specific methane production rate (1.37 L CH4/L.d) and the methane content in the biogas (around 74%). The removal efficiencies of volatile solid and chemical oxygen demand were also as high as 80.1% and 85.1%, respectively, and the overall energy efficiency was 91.2%. However, the process stability deteriorated at an organic loading rate of 4.25 g VS/L.d.
        38.
        2015.11 서비스 종료(열람 제한)
        Methanogenic community shift and comparison were determined by 454 pryosequencing for two different full-scale anaerobic digesters treating municipal sludge. For monitoring long-term of microbial communities, samples were collected for two year at three-monthly basis. The two mesophilic AD bioreactor were operated at similar operating conditions, but different substrate streams. Methanospirillum were identified as the key drivers of methanogenesis in full-scale anaerobic digester treating municipal sludge. In Joongrang (JR) digester, Methanospirillum was dominant (48%±10.3) over almost all period, but the dominant genus move to Methanosaeta and Methanoculleus due to low acetate concentration (0.02 g/L), total ammonia nitrogen concentration, respectively. In Asan digester (AS), Methanospirillum also was dominant (41%±12.6) like JR digester, but methanogenic community shift was examined twice. One of those was from Methanospirillum to Methanophaerula due to pH sharply decrease (<5.5) and second shift was Methanosaeta increase due to low VFAs concentration (0.25 g/L).
        39.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        Recently, it is increase in the processing of organic waste using anaerobic digestion. Therefore, the studies on theprocessing method for increasing the anaerobic digestion waste water. Among them, purification treatment and liquidfertilizer have been issues. But, efficiency of the ways is very insufficient. While increasing the anaerobic digestionprocess, increasing study for the treatment of anaerobic digestion waste water. In this study, It was evaluate thecharacteristic of liquid fertilizer of anaerobic digestion waste water as affected by aeration rate and solid-liquid separation.Also, we review liquid fertilizer degree using maturity assessment indicators of liquid fertilizer by national institute ofanimal science. As a result, insertion of air(3.5L/min) sample after solid-liquid separation appeared was the highest. pHand color was difficult to understanding correlation with liquid fertilizer among maturity assessment indicators(seedgermination, ammonia(NH3), hydrogen sulfide(H2S), electrical conductivity(EC), pH, color, etc).
        40.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        According to the elementary analysis on organic wastes, the C/N ratio, a major condition for anaerobic digestion, is 5.40 to 9.23, except for food waste leachate (FWL). Defined by Tchobanoglous’ mathematical biogas prediction model, methane gas and biogas productions increased, depending on the mixing rate of FWL. Furthermore, anaerobic digestion both wastewater sludge and food waste leachate based on the right mixing ratio, increases methane gas productions compared to digesting wastewater sludge alone. In other words, co-anaerobic digestion is more likely to realize biogasification than single anaerobic digestion. We mix food waste leachate and wastewater sludge from the dairy and beer manufacturing industry by the proportion of 1 : 9, 3 : 7 and 5 : 5. It turns out that they produced 118, 175 and 223 CH4 mL/g VS in the dairy manufacturing and 176, 233 and 263 CH4 mL/g VS in beer manufacturing of methane gas. The result suggests that as the mixing rate of food waste leachate rises, the methane gas productions increases as well. And more methane gas is made when co-digesting wastewater sludge and food waste leachate based on the mixing ratio, rather than digesting only wastewater sludge alone. Modified Gompertz and Exponential Model describe the BMP test results that show how methane gas are produced from organic waste. According to the test, higher the mixing rate of food waste leachate is, higher the methane gas productions is. The mixing ratio of food waste leachate that produces the largest volume of methane gas is 1 : 9 for the dairy industries and 3 : 7 for brewery. Modified Gompertz model and Exponential model describe the test results very well. The correlation values (R2) that show how the results of model prediction and experiment are close is 0.920 to 0.996.
        1 2 3 4