High-rise buildings are equipped with TMD (Tuned Mass Damper), a vibration control device that ensure the stability and usability of the building. In this study, the seismic response control performance was evaluated by selecting the design variables of the TMD based on the installation location of the twisted irregular building. To this end, we selected analysis models of 60, 80, and 100 floors with a twist angle of 1 degree per floor, and performed time history analysis by applying historical seismic loads and resonant harmonic loads. The total mass ratio of TMDs was set to 1.0%, and the distributed installation locations of TMDs were selected through mode analysis. The analysis results showed that the top-floor displacement responses of all analysis models increased, but the maximum story drift ratio decreased. In order to secure the seismic response control performance by distributed installation of TMDs in twisted irregular buildings, it is judged that the mass ratio distribution of TMDs will act as a key variable.
ROK Navy Landing Ship Fast(LSF-II) is equipped with special equipment that is not compatible with other combat ships due to special missions. So there are almost no maintenance capabilities except for simple repair parts replacement and maintenance parts. The researcher determined that the way to solve these problems was to apply Performance Based Logistics (PBL), and reviewed the cases of PBL applications abroad and domestically. To confirm the current maintenance capability, we visited LSF-II operation unit to identify maintenance capabilities for each mounted equipment, and interviews with operators and maintenance practitioners confirmed the limitations of outsourcing maintenance and the need to apply PBL. In order to analyze the effect of PBL application, the measure of effectiveness and measure of performance were selected based on the opinions of LSF-II operation/maintenance practitioners and PBL experts and the practical experience of this researcher. A survey was conducted on operation/maintenance practitioners and professional personnel. Based on the survey results, the effect of applying PBL was analyzed using the AHP technique, and an efficient PBL application plan was proposed for LSF-II.
Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.
This research uses the Balanced Scorecard framework to create comprehensive performance indicators for foodservice programs in senior welfare centers. The study evaluates these programs in South Korean senior welfare centers from financial, customer, learning and growth, and internal business process perspectives. Thirty-five evaluation indicators were developed and validated through the Delphi study used for the survey study nationwide, and 115 were collected. Thirty elderly welfare centers participated in on-site evaluation by the expert. The results of the survey study, 81.4, indicate overall favorable performance, with social workers scoring slightly lower than dietitians and directors. On-site evaluations showed better performance, 84.4, compared to the survey study. The learning and growth perspective showed a significantly higher score on on-site evaluation, and the score was 20.9, which was 3.1 points higher than 17.8 from the survey study (p<0.001). However, there is room for improvement, including adopting nutrition management programs, defining roles for dietitians and cooks, enhancing food sanitation regulations, and providing financial support. Additional recommendations involve recruiting nutrition personnel, collaborating with local governments, and integrating centers for children’s foodservice management at the local level. This research provides valuable insights into enhancing the foodservice in elderly welfare centers to improve the nutrition and well-being of the elderly population.
Proton exchange membrane fuel cells (PEMFCs) are an auspicious energy conversion technology with the potential to address rising energy demands while reducing greenhouse gas emissions. The stack’s performance, durability, and economy scale are greatly influenced by the materials used for the PEMFC, viz., the membrane electrocatalyst assembly (MEA) and bipolar flow plates (BPPs). Despite extensive study, carbon-based materials have outstanding physicochemical, electrical, and structural attributes crucial to stack performance, making them an excellent choice for PEMFC manufacturers. Carbon materials substantially impact the cost, performance, and durability of PEMFCs since they are prevalently sought for and widely employed in the construction of BPPs and gas diffusion layers (GDLs)) and in electrocatalysts as a support material. Consequently, it is essential to assemble a review that centers on utilizing such material potential, focusing on its research development, applications, problems, and future possibilities. The prime focus of this assessment is to offer a clear understanding of the potential roles of carbon and its allotropes in PEMFC applications. Consequently, this article comprehensively evaluates the applicability, functionality, recent advancements, and ambiguous concerns associated with carbonbased materials in PEMFCs.
PURPOSES : The purpose of this study was to evaluate the common performance of asphalt pavements, determine the timing of preventive maintenance, and determine the optimal timing of application of the preventive maintenance methods by analyzing PMS data. METHODS : Using PMS data on asphalt pavement performance on highways, we derived the major damage factors and evaluated them according to the public period and traffic level. Among the factors evaluated, we determined those that could be improved by preventive maintenance, calculated the amount of change annually, and derived the timing of the application of the preventive maintenance method through correlation analysis. RESULTS : Among highway PMS data factors, crack variation was found to affect preventive maintenance, which increased rapidly after five years of performance. Traffic analysis showed that changes increased rapidly in the fifth, sixth, and seventh years when AADT exceeded 20,000, exceeded 10,000, and was under 10,000, respectively. Analysis of the amount of crack variation according to the pavement type showed that crack variation increased rapidly in the overlay section compared to the general AP section. CONCLUSIONS : Crack variation is the performance factor that was expected to be effective in preventive maintenance, and the PMS data showed that the initial application time of the preventive maintenance method varied by one year, depending on the traffic volume.
본 연구는 필라테스 리더-멤버 간의 교환관계(TMX)가 직무성과에 미치는 영향관계를 밝히고 자 2023년 4월 1일~7월 12일까지 커플자료 82팀(164명 : 리더 82명, 멤버 82명)을 편의표본 추출하여 다 음과 같은 결과를 도출하였다. 첫째, 자기효과는 리더 교환관계가 높을수록 리더 직무성과도 높아지는 것 으로 나타났고, 상대방 효과는 멤버 교환관계가 높을수록 리더 직무성과도 높아지는 것으로 나타났다. 둘 째, 상대방효과는 리더 교환관계가 높을수록 멤버 직무성과도 높아지는 것으로 나타났으며, 자기효과는 멤 버 교환관계가 높을수록 멤버 직무성과도 높아지는 것으로 나타났다. 따라서 상호적 관계가 의존적 관계로 이어진다는 점에서 교환관계(TMX)에 대한 시스템적 요구가 반영된 결과라 볼 수 있다.
2017년 지진에서 다수의 필로티형 건물에 손상이 발생함에 따라 필로티형 건물의 내진성능 평가의 중요성이 대두되 었다. BST면의 활용과 검증은 여러 연구자들에 의해 이미 수행되었다. BST면을 활용하여 필로티형 건물의 횡저항성능을 파악 할 수 있다면, 필로티형 건물의 초기 계획 또는 내진보강 계획 시 횡력저항 시스템을 배치하는데 도움이 될 것이다. 이에 본 연 구에서는 필로티형 건물에 BST면의 적용가능성을 파악한 후, 실제 지진피해를 입은 필로티형 건물의 보강 전과 후의 BST면을 비교하여 횡저항성능을 파악하였다. 그 결과 손상된 필로티형 건물을 보강함에 있어 보강된 평면의 BST면과 밑면 전단력에 대 한 비틀림 모멘트의 비를 기울기로 하는 거동 분석을 통해 필로티형 건물의 횡저항성능을 파악함으로써 보다 효과적인 보강방 안을 제시할 수 있었다.
본 연구에서는 가설 강교에 사용되는 조립식 거더-교각 접합부에 대한 새로운 설계를 제안하였다. 새로운 접합부는 모듈의 각 부분을 공장에서 용접하여 제작한 후 현장에서 용접 대신 볼트 접합부를 사용하도록 구성하여 현장에서 모듈을 신속 하게 조립하도록 구성하였다. 이 새롭게 제안된 거더-교각 접합부의 구조적 성능을 평가하기 위해 정적 거동, 연성 성능 및 회 전 성능을 분석하는 실험을 수행하였다, 실험결과 제안된 볼트 접합부는 기존의 용접 체결부에 비해 정적 지지력, 연성 거동 및 회전 성능에서 우수한 성능을 보여주었다. 비록 볼트 체결부의 강성이 용접 체결부보다 다소 작지만, 체결부의 연성 성능이나 정적 지지력에 큰 영향을 미치지 않았으며, 안전성 향상, 빠른 조립 및 분해, 건설 공기 단축 등의 유리한 특성으로 인해 가설 교량 건설에 적합한 것으로 평가되었다.
In order to develop greenhouse cooling and water saving technologies suitable for desert climate, the performance evaluation of the cooling packages and condensate water recovery from cooling fan coil unit. As a result of the application for tomato greenhouse in summer, the root zone temperature of root zone cooling+duct cooling case and root zone cooling case was 25℃ during the day and 20℃ at night, which was suitable for tomato growth. When the nutrient solution tank was cooled, the temperature of the nutrient solution was maintained at 20 degrees, but otherwise, the temperature exceeded 30℃, causing the root zone temperature to rise. Condensate water recovery per fan coil unit was 93L on average per day in August, and was proportional to relative humidity in greenhouse and temperature difference between dew point temperature and the surface temperature of heat exchanger. Tomato growth was found to be improved in the order of root zone cooling+duct cooling, root zone cooling, duct cooling and control. It was analyzed that the yield of root zone cooling+duct cooling, root zone cooling and duct cooling increased by 35%, 28% and 11%, respectively, compared to the control.
In school safety education, it was difficult to apply how to link the safety education according to grades year, and student’s interest was reduced due to the repetition of existing safety education contents and the absence of new teaching methods and tools. In this study, as a new type of safety education, a performance forms fire safety education program was developed. This program aims to increase students’ interest and satisfaction in safety education, and to this end, it was connect with korean elementary science curriculum and combined various engineering teaching materials or tools and methods. Developed program was applied to 2,231 students, 25 schools in 10 regions of Gyeonggi-do and surveyed 476 fifth and sixth grade students program satisfaction and 3 factors of interest in fire safety education who could respond to the survey. As a result of applying the program, more than 90% of students responded more than 'satisfied' in all areas. and statistical test(independent t-test and non-parametric test) indicates over-all satisfaction and interest factors in the program are high regardless of gender and grade, so the effectiveness can be guessed indirectly and there is a universal applicability also. Moreover, examining the influence of student interest level in the satisfaction of the fire safety program, it was found that in order to increase the satisfaction of fire safety education, students should have more fun with the content and feel interest in the teacher's teaching method or explanation.
Failure to comply with the performance test requirements for the centrifugal pumps at power plants often results in performance dissatisfaction as a result of field tests. This study proposed a method of reducing the uncertainty of the field test results by evaluating the systematic error in the measurement system caused by failure to follow the test requirements using the computational fluid dynamics(CFD) technique. As a result of the evaluation of the systematic error and reflecting it in the performance test data, it was confirmed that the error occurred at a constant rate with respect to the flowrate and that the pump, which showed a difference in performance actually had the same performance.
When compact HVAC is applied to a building, various variables exist in performing the functions of air conditioning, ventilation, and hot water supply of the building, and various experimental and empirical evaluations according to the energy performance evaluation method of the building occur. We are going to present research data for preparing domestic evaluation standards for energy evaluation methods for compact HVAC and zero-energy buildings to be applied in the future.