This study was carried out to examine the physical characteristics of bacterial cellulose (BC) and its optimal culture condition using coffee by-products. Recently, recycling resources and employing eco-friendly materials have been raised as significant issues in the food industry. As the coffee industry develops, interests and efforts for recycling coffee wastes are also growing. This study attempted to confirm the production of BC by utilizing spent coffee grounds filtrate as a medium. In order to confirm the optimal culture conditions for BC production, different culture methods, initial pH, culture temperature, and culture period were examined. The optimal pH and temperature were 6.0 and 30oC, and the optimal culture period was 14 days. The cultivated BC was dried by hot air drying, freezedrying, and mold drying, respectively. Then, the properties of the BC films, such as tensile strength, elongation, water-solubility, thickness, and chromaticity were compared. The drying method affected the shape and structure of the final BC films. The production of BC film is expected to expand opportunities for recycling coffee by-products and contribute to solving environmental problems caused by food waste.
현재 우리 산업의 가속화된 발전으로 인해 다양하고 많은 양의 오염이 만들어지기 시작하고 있다. 특히 폐수의 경우 석유, 금속 및 유기물로 오염되는 강과 바다가 늘고 있으며, 빠른 조치가 필요해 보인다. 이러한 오염에 대응하기 위해 폐수에서 분리막을 이용한 깨끗한 물의 여과가 비용적으로 유리하고 친환경적인 기술로 떠오르고 있다. 재생 자원으로 만들 어진 막여과 기법들이 환경오염의 원인 중 하나인 합성고분자 분리막들을 대체하기 위해 많이 사용되고 있다. 박테리아 셀룰 로오스(Bacterial Cellulose / BC)는 순수하고 뚜렷한 형태의 셀룰로오스 나노섬유(Cellulose nanofibrils / CNF)이다. CNF에서 제조된 나노페이퍼는 각기 다른 용도로 한외여과막과 나노여과막으로 사용된다. BC의 높은 결정성으로 인해 폐수 처리 막의 필수 기준인 우수한 기계적 성질을 가질 수 있다. 본 리뷰 논문에서는 염료, 오일 및 중금속 등 폐수의 오염물질들을 걸러내기 위해 사용될 수 있는 BC 기반 분리막들에 대해 논의한다.
Pb를 흡착처리하기 위해 자외선 유도 그라프트 중합을 사용하여 박테리아 셀룰로스에 아크릴산을 모디피케이션한 흡착제를 제조하였다. 제조된 흡착제는 SEM, FTIRATR등의 기기분석에 의해 평가되었고, 흡착실험 결과를 흡착속도의 거동을 고찰하기 위한 방법으로 pseudo-first-order로 언급되어지는 Benaissa 모델과 pseudo- second-order로 언급되어 지는 Kurniawan 모델에 적용하였다. 제조된 흡착제는 Benaissa 모델에 보다 더 일치함을 보여주었다.
본 연구에서는 환경 친화적 재료를 제조할 목적으로 자연계에 풍부한 bacteri al cellulose를 지지체로 하여 이온교환 특성이 있는 acrylic acid 단량체를 자외선 그라프트 중합법으로 고정시켰다. 이 중합체를 중금속 흡착제로서 막분리 hy brid시스템에 적용하기 위해 모델 용질로 Pb에 대한 흡착거동을 조사하였고 이에 대한 흡착 등온식 및 Benaissa model과 Kurniawan model 속도식을 적용하여 해석하였다.
Bacterial Cellulose (BC) produced from Acetobacter sp. is used in a wide variety of applications including paper, textile, food, cosmetic, and medicine due to its high mechanical strength, purity, and water holding capacity. In Southeast Asia, coconut water is commonly used as a carbon source for producing BC called “nata de coco”. However, there have been very few attempts to produce BC from juices of other fruit sources, such as pear, apple, and grape, which are major fruits produced in East Asia including South Korea. Since those fruits have relatively low pH because of a large quantity of organic acids, the control of pH is necessary to achieve the maximum BC production yield. The objective of this study was to investigate the BC fermentation characteristics of various fruit juices as media and to determine optimum conditions for the BC production. Sodium acetate was added to each fruit juice medium and the pH was adjusted to pH 5 with acetic acid. Acetobacter xylinus KCCM 41431 was inoculated and BC fermentation was performed for 10 days. The total sugar levels of pear, apple, and grape were 102.31, 155.10, 131.70 g/l and the pHs were 4.72, 4.04, and 3.08, respectively. In buffered fruit juice media, BC production yields were 1.98, 1.44 and 2.55 fold higher than those of pure fruit juice, probably due to the reduction of acid stress. However, the BC production was inhibited at high sodium acetate concentration (>150mM).
Production of Bacterial Cellulose (BC) by Gluconacetobacter sp. A5 was studied in shaken culture using different cost-effective carbon sources and its structural and mechanical properties were evaluated. Glycerol showed the highest level (7.26 g/l) of BC production, which was about three times higher than the yield in glucose medium. BC production depended not only on the decrease in pH, but also on the ability of Gluconacetobacter sp. A5 to synthesize glucose from different carbon sources and then polymerize it into BC. All BC produced from different carbon sources exhibited a three-dimensional reticulated structure consisting of ultrafine cellulose fibriles. Carbon sources did not significantly change the microfibrile structure of the resulting BC. BC produced from glucose medium had the lowest water-holding capacity, while BC from molasses medium had the highest. XRD data revealed that all BC were cellulose type І, the same as typical native cellulose. The crystalline strength of BC produced in glucose medium was the highest, and that in molasses medium was the lowest. Our results suggest that glycerol could be a potential low-cost substrate for BC production, leading to the reduction in the production cost, and also to produce BC with different mechanical properties by selecting appropriate carbon source.
Electron beam-induced grafting polymerization was employed to prepare Acrylic acid-grafted bacterial cellulose (BC-g-AAc). BC-g-AAc as an adsorbent was applied to remove heavy metals (e.g., As, Pb, and Cd). This study examined followings; morphological change of surface, adsorptive behavior of BC-g-AAc, and interpretation of adsorptive kinetics. Specific surface areas of BC and BC-g-AAc were 0.9527 m2 g-1 for BC and 0.2272 m2 g-1 for BC-g-AAc, respectively as measured by BET nitrogen adsorption, revealing the morphological change of the surface of BC-g-AAc. Batch adsorption test was performed to investigate adsorptive behavior of BC-g-AAc in aqueous solution. The amounts of Pb and Cd adsorbed on BC-g-AAc were 69 mg g-1 and 56 mg g-1, respectively. However, As was not adsorbed on BC-g-AAc due to its neutral nature. Both the Benaissa model and the Kurniawan model were applied in the study to interpret adsorptive kinetics. From the value of correction coefficient (R2), adsorptive kinetics of Pb and Cd were subjected to Kurniawan model referred to pseudo-second-order. Taken together, the results of this study show that BC-g-AAc has potential as a heavy metal (eg., Pb, Cd)-adsorbent made of an environmentally friendly material.
Bacterial cellulose (BC) has played important role as new functional material for food industry and industrial products based on its unique properties. The interest in BC from static cultures has increased steadily in recent years because of its potential for use in medicine and cosmetics. In this study, we investigated culture condition for BC production by Acetobacter sp. F15 in static culture. The strain F15, which was isolated from decayed fruit, was selected on the basis of BC thickness. The optimal medium compositions for BC production were glucose 7%, soytone 12%, K2HPO4 0.2%, NaH2PO4ㆍ2H2O 0.2%, lactic acid 0.05% and ethanol 0.3%, respectively. The strain F15 was able to produce BC at 26℃-36℃ with a maximum at 32 ℃. BC production occurred at pH 4.5-8 with a maximum at pH 6.5. Under these conditions, a maximum BC thickness of 12.15 mm was achieved after 9 days of cultivation; this value was about 2.3-fold higher than the thickness in basic medium. Scanning electron micrographs showed that BC from the optimal medium was more compact than plant cellulose and was reticulated structure consisting of ultrafine cellulose fibrils. BC from the optimal medium was found to be of cellulose type I, the same as typical native cellulose.
In order to develop bacterial cellulose (BC) with antimicrobial activity against pathogenic microorganisms, silver and chitosan were incorporated into BC, respectively. Experiment results showed that antimicrobial activity against pathogenic microorganisms was improved with increasing silver concentration. Chitosan also showed a direct proportion between its concentration and antimicrobial activity. These results suggest that antimicrobial effects of BC using silver and chitosan are well proven to be effective. We also tested the stainability of BC with natural colorant for the application of food industry. Stainability of BC was enhanced with increasing natural colorant concentration. Decolorization of BC stained was observed by dipping it into distilled water with one hour-intervals. As a result, there was no significant difference. Combination of natural colorant-stainability and antibiosis of BC is expected to be useful in making colored antibiotic BC in various industrial application areas, considering its antimicrobial activity, high stainability and low decolorization tendency.
본 연구에서는 BC를 백설기에 첨가하여 저장 중 품질특성을 조사하였다. 그 결과, bacterial cellulose 0.09%이상 첨가한 백설기가 무첨가구에 비해 저장동안 노화도가 낮게 나타났다. 또한 hardness를 측정한 결과 BC첨가를 첨가한 구간들에서 hardness가 낮게 나타나 노화억제효과가 있었다. 관능검사 결과 거의 모든 평가항목에서 시료들 간의 유의적인 차이가 없었으나, 전반적인 기호도에서 BC를 첨가한 백설기가 더 좋은 것으로 나타