In this study, we conducted a shake table test to verify the seismic performance of the paneling system with steel truss composed of bolt connections. The control group was set to the traditional paneling system with steel truss connected by spot welding method. Test results showed that the bolted connection type paneling system has excellent deformation capacity without cracking or brittle fracture of the steel truss connection parts compared to the welding type paneling system. Furthermore, in the bolted connection type, slight damage occurred at the time of occurrence of the same story drift angle as compared with the existing method, it is considered that it has excellent seismic performance. In compliance with the performance-based design recommended for the current code (ASCE 41-13) on non-structural components, it is judged that in the case of the bolted connection type paneling system, it can be applied to all risk category structures without restriction. However, in the case of traditional paneling system with spot welding method, it is considered that it can be applied limitedly.
Corrosion is one of the most typical aging phenomena associated with long-term use of steel structures. Corrosion of high-tension bolted connections causes problems such as reduction of thickness of member and relaxation of axial force of high-tension bolt, thereby reducing load-carrying capacity of high-tension bolted connections. In this study, three specimens were subjected to natural corrosion in order to evaluate the residual load-carrying capacity of high-tension bolted connections where corrosion occurred. Two specimens were newly fabricated for comparison with the corroded specimens. In addition, the static bending test was performed to compare and investigate the behavior characteristics of the high-tension bolted connections and the final failure modes. The residual load-carrying capacity of the corroded high-tension bolted connections was evaluated.
In recent years, the Glass Fiber Reinforced Polymer Plastic (GFRP) structural shapes are available in civil engineering applications. Among many manufacturing techniques used for GFRP structural shapes, pultrusion process is one of the most widely used techniques to produce the structural members in civil engineering applications. This study was focused on the mechanical behavior of singly bolted lap-joint connection with various hole clearances (tight-fit: 0.5mm, 1.0mm, 1.5mm, 2.0mm, 3.0mm) in Pultruded GFRP structural members. The specimens with single bolt-hole have been tasted in tension under bolt-loading conditions. The failed specimens were examined for their failure load and fracture patterns with respect to the various hole clearances.
Fiber reinforced plastic (FRP) structural shapes are readily available in civil engineering applications. Among many manufacturing techniques used for FRP structural shapes, pultrusion process is one of the most widely used techniques in civil engineering applications. Pultrusion is a manufacturing process for producing continuous lengths of reinforced polymeric plastic structural shapes with constant cross-section. Pultruded composites are attractive for structural applications because of their continuous mass production with excellent mechanical properties. This paper presents the results of investigations pertaining to the bolted connection with two bolts for the pultruded FRP (PFRP) structural members. PFRP bolted connection tests were conducted with end distance to bolt diameter ratio (e1/db) and two types of bolt pattern such as horizontal (Pattern A) and vertical arrangement (Pattern B). As a result, it is found that the e1/db is recommended as the ratio of 4. In addition, it is also found that the bearing strengths at failure of the Pattern A and Pattern B have a similar value.
캘리포니아의 강구조 모멘트프레임은 1994년 노스리지 지진시 6.8의 규모와 진앙지에서 근접한 지리적인 악조건에도 불구하고 붕괴나 인명피해 없이 잘 견뎌냈다. 그러나 이후 시행된 조사에서 경제적으로 지진시 안전하다고 믿어져 널리 쓰인 welded flange-bolted web(WFBW) 강접합부(moment connection)의 기둥과 용접의 경계면에서 취성 파괴가 다수 발견되었다. 이논문은 선형파괴역학과 노스리지진이후의 WFBW 강접합부 실험을 이용하여 WFBW 강접합부와 노스리지지진이후 기존 강접합부의 대안으로 추천되고 있는 reduced beam section (RBS) 강접합부의 취성 파괴강도를 결정하는 수치적인 방법을 제안하고 이를 이용하여 이들 강접합부의 취성 파괴모드를 추정하였다.
Recently, since stainless steels have important properties such as superior durability, fire resistance and corrosion resistance, they are widely used as non-structural element as well as structural element in building construction. In this study, experimental studies have been performed to investigate the structural behaviors such as ultimate strength and fracture mode of double shear two-bolted connection and four-bolted connection with austenitic stainless steel(STS304) and varied end distance. In case of two-bolted connection, all of specimens showed block shear fracture. And four-bolted connection failed by block shear fracture or net section fracture at test end.
Recently, the use of duplex stainless steel which has a two-phase microstructure consisting of grains of ferritic and austenitic stainless steel has been increased in a variety of industrial fields. Especially, STS329FLD with lower nickel content and higher yield strength compared with austenitic stainless steel has been developed. In this paper, experiments have been conducted to investigate the structural behaviors of single shear duplex stainless steel(STS329FLD) bolted connection with four bolts. Specimens with relatively long end distance failed by block shear fracture accompanied with curling (out-of-plane deformation) and the curling reduced the ultimate strength.
This study is to investigate the ultimate strength and curling influence of single shear two bolted connection with 7075-T6 aluminum alloys. The validation of element analysis was verified through the comparison between test result and finite element analysis prediction and strength reduction rate by curling was estimated quantitatively. Moreover, additional parametric analysis with extended variables was conducted and the conditions of curling occurrence according to end distance and edge distance were proposed.
The purpose of this study was to analyze the reduction of clamping force of TS (torque shear) bolted connection under fatigue loading. Generally, TS bolt has been totally tightened by torque shear wrench. However the plant structures experienced various fatigue loadings that makes reduction of clamping force of TS bolt. Therefore, this study conducted to the fatigue load test.
The purpose of this study was to investigate deformation and reduction of initial clamping force in slip critical type connection under fatigue loading. And, the parameters of this study were the different clamping force and friction coefficient of surface of plate. As a result, the clamping force of all specimens were generally decreased in comparison with initial values under fatigue loading.
This study investigates the ultimate strength and curling influence in single shear bolted connection with 7075-T6 aluminum alloys using numerical approach. The applicability of finite element analysis was validated through the comparison between existing test results and numerical predictions. Curling was observed in some specimens with a relatively long end distance and reduced the ultimate strength of bolted connection. Strength reduction ratio by curling was estimated quantitatively and it is known that curling caused the strength reduction by maximum 21%.
This study investigates the ultimate strength and curling influence in single shear bolted connection with aluminum alloys(6061-T6) using finite element analysis. The applicability of numerical modeling was validated through the comparison of existing test results. Main variables are end distance and edge distance. Strength reduction ratio by curling was estimated quantatively and it is known that the curling reduced the ultimate strength by maximum 26%.
파형강판 구조물은 강판 세그먼트를 현장에서 볼트연결하고, 양질의 뒷채움 시공을 통해 시공성을 높일 수 있기 때문에 최근 생태통로,소규모 교량 및 관로 등에 폭넓게 시공되고 있다. 본 연구는 휨하중을 받는 볼트연결된 파형강판 세스먼트의 정적 및 피로거동을 실험적으로 분석하였다. 피로거동을 분석하기 위하여 볼트 직경, 와셔와 같은 연결부 상세를 실험변수로 하였으며, 실험에 사용된 실험체의 파형의제원은 400×150 mm이다. 정적실험 결과 모든 실험체의 실험 극한강도가 이론강도보다 높게 나타났으며, 강판의 지압 및 상부강판 볼트구멍의 찢김에 의해 파괴되었다. 6mm와 7mm 강판에 대하여 하중범위 209kN에서 517kN사이로 피로실험을 수행하였으며, 실험결과 정적파괴시의 강판지압과 찢김파괴에서 피로실험시에는 강판지압과 볼트 전단의 형태로 변화하였으며, 2백만회 피로한계는 대략 85MPa로 분석되었다.