Among the products of the electrocatalytic reduction of carbon dioxide (CO2RR), CO is currently the most valuable product for industrial applications. However, poor stability is a significant obstacle to CO2RR. Therefore, we synthesized a series of bimetallic organic framework materials containing different ratios of tungsten to copper using a hydrothermal method and used them as precursors. The precursors were then subjected to pyrolysis at 800 °C under argon gas, and the M-N bimetallic sites were formed after 2 h. Loose porous structures favorable for electrocatalytic reactions were finally obtained. The material could operate at lower reduction potentials than existing catalysts and obtained higher Faraday efficiencies than comparable catalysts. Of these, the current density of WCu-C/N (W:Cu = 3:1) could be stabilized at 7.9 mA ‧ cm-2 and the FE of CO reached 94 % at a hydrogen electrode potential of -0.6 V (V vs. RHE). The novel materials made with a two-step process helped to improve the stability and selectivity of the electrocatalytic reduction of CO2 to CO, which will help to promote the commercial application of this technology.
Schlumbergera truncata absorbs CO2 through its mature phylloclades during the night, and can use a substantial amount of CO2 without requiring ventilation. This study investigated the growth and photosynthetic responses of S. truncata ‘Red Candle’ at two CO2 levels—ambient (≈ 400 μmol・mol-1) and elevated (≈ 1000 μmol・mol-1). At 0–8 weeks after treatment (WAT), width and length of mature phylloclade and length of immature phylloclade did not differ significantly among the CO2 treatments. At 4–8 WAT, number of branches and phylloclades were significantly greater in plants grown under ambient CO2 than those under elevated CO2. Net CO2 uptake was highest in mature phylloclades of plants grown under ambient and elevated CO2 regimes at night, at 2.51 and 1.30 μmol·CO2·m-2·s-1, respectively. However, no statistically significant variation was observed at 6 WAT, and stomatal conductance was significantly affected only by CO2 uptake time at 6 and 8 WAT. Water-use efficiency of mature and immature phylloclades at night increased with increase in CO2 levels (r = 0.7462 and 0.9312, respectively). At 123 days after treatment, plants grown under elevated CO2 had 82.7 floral buds, compared to 72.1 buds in those under ambient CO2. However, this difference was not statistically significant. Moreover, S. truncata grown under elevated CO2 exhibited decreased growth and photosynthesis, whereas the number of floral buds did not exhibit any significant differences among the treatments.
We conducted a study on excessive doping of the Cr and In elements in Bi-Sb-Te materials satisfying the Hume- Rothery rule, and investigated the resulting electrical and thermal properties. From X-ray diffraction (XRD) results, we confirmed the formation of a single phase even with excessive doping. Through analysis of electrical properties, we observed the highest enhancement in electrical characteristics at y = 0.2, suggesting that the appropriate ratio of Bi-Sb significantly influences this enhancement. Using the Callaway-von Baeyer (CvB) model to assess scattering due to point defects, we calculated the experimental point defect scattering factor (ΓCvB.exp), which was notably high due to the substantial differences in volume and atomic weight between the substituted (Cr, In) and original (Bi, Sb) elements. Additionally, we conducted a single parabolic band (SPB) modeling analysis of materials with compositions y = 0.1 and 0.2, where, despite a decrease in densityof- states effective mass (md *) during the enhancement process from y = 0.1 to 0.2, a sharp increase in non-degenerate mobility (μ0) led to an 88 % increase in weighted mobility (μw). Furthermore, analyzing zT with respect to nH revealed a 51 % increase in zT at a composition of y = 0.2. This study confirmed a significant reduction in lattice thermal conductivity with the co-doping strategy, and with further compositional studies to improve electrical properties, we anticipate achieving high zT.
In this work, a series of BaTiO3-based ceramic materials, Ba(Al0.5Nb0.5)xTi1-xO3 (x = 0, 0.04, 0.06, 0.08), were synthesized using a standard solid-state reaction technique. X-ray diffraction profiles indicated that the Al+Nb co-doping into BaTiO3 does not change the crystal structure significantly with a doping concentration up to 8 %. The doping ions exist in Al3+ and Nb5+ chemical states, as revealed by X-ray photoelectron spectroscopy. The frequencydependent complex dielectric properties and electric modulus were studied in the temperature range of 100~380 K. A colossal dielectric permittivity (>1.5 × 104) and low dielectric loss (<0.01) were demonstrated at the optimal dopant concentration x = 0.04. The observed dielectric behavior of Ba(Al0.5Nb0.5)xTi1-xO3 ceramics can be attributed to the Universal Dielectric Response. The complex electric modulus spectra indicated the grains exhibited a significant decrease in capacitance and permittivity with increasing co-doping concentration. Our results provide insight into the roles of donor and acceptor co-doping on the properties of BaTiO3-based ceramics, which is important for dielectric and energy storage applications.
Photocatalytically splitting water into hydrogen upon semiconductors has tremendous potential for alleviating environmental and energy crisis issues. There is increasing attention on improving solar light utilization and engineering photogenerated charge transfer of TiO2 photocatalyst because it has advantages of low cost, non-toxicity, and high chemical stability. Herein, oxygen vacancies and cocatalysts (Cu and MoS2) were simultaneously introduced into TiO2 nanoparticles from protonic titanate by a one-pot solvothermal method. The composition and structure characterization confirmed that the pristine TiO2 nanoparticle was rich in oxygen vacancies. The photocatalytic performances of the composites were evaluated by solar-tohydrogen evolution test. The results revealed that both Cu-TiO2 and MoS2- TiO2 could improve the photocatalytic hydrogen evolution ability. Among them, 0.8% Cu-TiO2 showed the best hydrogen evolution rate of 7245.01 μmol·g−1·h−1, which was 3.57 and 1.34 times of 1.25% MoS2- TiO2 (2726.22 μmol·g−1·h−1) and pristine TiO2 material (2028.46 μmol·g−1·h−1), respectively. These two kinds of composites also had good stability for hydrogen evolution. Combined with the results of photocurrent density and electrochemical impedance spectra, the incorporation of oxygen vacancies and cocatalysts (Cu and MoS2) could not only enhance the light-harvesting of TiO2 but also improve the separation and transfer capabilities of light-induced charge carriers, thus promoting water splitting to hydrogen.
Artificial photosynthesis harnesses clean and sustainable solar power to catalyze the conversion of CO2 and H2O molecules into valuable chemicals and O2. This sustainable approach combines energy conversion with environmental pollution control. Non-oxide photocatalysts with broad visible-light absorption and suitable band structures, hold immense potential for CO2 conversion. Nevertheless, they still face numerous challenges in practical applications, particularly in CO2 conversion with H2O. Surface modification and functionalization play the significant role in improving the activity of non-oxide photocatalysts. Multifarious strategies, such as cocatalyst loading, surface regulation, doping engineering, and heterostructure construction, have been explored to optimize light harvesting, bandgap driving force, electron–hole pairs separation/transfer, CO2 adsorption, activation, and catalysis processes. This review summarizes recent progress in surface modification strategies for non-oxide photocatalysts and discusses their enhancement mechanisms for efficient CO2 conversion. These insights are expected to guide the design of high-performance non-oxide photocatalyst systems.
The interface area of the face sheet and core of the sandwich composite is seen as a weakness due to its low de-bonding toughness. To overcome this concern, it is critical to develop a suitable modification strategy to enhance the de-bonding toughness of the face sheet/core interface. In the present study, the corrugated core reinforced sandwich composite was prepared through co-curing and secondary bonding approaches. The MWCNTs reinforced adhesive was induced in the face sheet/core interface in different weight concentrations. The MWCNT-reinforced adhesive was prepared using the sonication technique, and its dispersion was examined using atomic force microscopy (AFM). The three-point bending test revealed that sandwich composite prepared using the co-cure method has higher flexural strength than secondary bonded samples due to better bonding face sheet and corrugated core. Compared with MWCNT-free corrugated core reinforced co-cured sandwich composites (CCSC), the flexural strength of 1 wt.% MWWCNT-induced sandwich composite was increased by 101.28%. The microstructural study showed that secondary bonded samples had extensive fibre breakage at the face plate due to early de-bonding of the face sheet and corrugated core. Furthermore, the free vibrational analysis was performed to evaluate the natural frequency and damping values of the corrugated core reinforced sandwich composite. The modal test results indicated that inducing 1wt.% MWCNTs in the face sheet/core interface had enhanced the natural frequencies of co-cured sandwich composites. The present study provides a suitable method to address the weaker de-bonding toughness concerns of face sheet/core interface region of sandwich structures.
In the present study, a novel pH-sensitive hydrogel composite of pectin-grafted-poly (acrylic acid-co-itaconic acid)/MWCNTs- COOH was prepared by using graft copolymerization of acrylic acid and itaconic acid on pectin backbone with incorporation of MWCNTS- COOH. The prepared hydrogel composite has been employed for the adsorption and controlled release of the diclofenac sodium (DS) drug. The hydrogel composite was characterized by the analysis methods: FTIR, XRD, SEM, and TGA to analyze structural characteristics before and after DS drug adsorption. The swelling ratio of the hydrogel composite was investigated at different pH values from pH 1.2 to 10. According to the results, the swelling ratio of the hydrogel composite was found 4195% at pH 7.4. Adsorption process parameters such as pH, contact time, adsorbent dose, and temperature were investigated and found to have a significant influence on DS drug adsorption. The maximum DS drug loading through adsorption of 91% was obtained at pH 3, adsorbent dose of 0.05 g, contact time of 150 min, and temperature of 15 °C. The adsorption isotherm and kinetic results were well-fitted to Freundlich and second-order models. Thermodynamic parameters including changes in Gibb’s free energy, enthalpy, and entropy suggested that the adsorption of DS drug onto hydrogel composite was a spontaneous and exothermic process. The in vitro drug release experiment showed that the cumulative release of DS drug from hydrogel composite after 35 h was significantly higher in simulated intestinal fluid at pH 7.4 than in simulated gastric fluid at pH 1.2.
The raw material selected for this research was Brazil chestnut shells (BCs), which were utilized to gain porous carbon as a positive electrode for lithium–sulfur batteries (LSBs). The effects of N/S co-doped on the electrochemical properties of porous carbon materials were studied using thiourea as nitrogen and sulfur sources. The experimental results indicate that the N/S co-doped carbon materials have a higher mesopore ratio than the undoped porous carbon materials. The porous carbon material NSPC-2 has a lotus-like structure with uniform pore distribution. The N and S doping contents are 2.5% and 5.4%. The prepared N/S co-doped porous carbon materials were combined with S, respectively, and three kinds of sulfur carbon composites were obtained. Among them, the composite NSPC-2/S can achieve the initial specific discharge capacity of 1018.6 mAh g− 1 at 0.2 C rate. At 1 C rate, the initial discharge capacity of the material is 730.6 mAh g− 1, and the coulomb efficiency is 98.6% and the capacity retention rate is 71.5% after 400 charge–discharge cycles.
CO2 photocatalytic reduction is a carbon–neutral renewable energy technology. However, this technology is restricted by the low utilization of photocatalytic electrons. Therefore, to improve the separation efficiency of photogenerated carriers and enhance the performance of CO2 photocatalytic reduction. In this paper, g-C3N4/Pd composite with Schottky junction was synthesized by using g-C3N4, a two-dimensional material with unique interfacial effect, as the substrate material in combination with the co-catalyst Pd. The composite of Pd and g-C3N4 was tested to have a strong localized surface plasmon resonance effect (LSPR), which decreased the reaction barriers and improved the electron utilization. The combination of reduced graphene oxide (rGO) created a π–π conjugation effect at the g-C3N4 interface, which shortened the electron migration path and further improved the thermal electron transfer and utilization efficiency. The results show that the g-C3N4/ rGO/Pd (CRP) exhibits the best performance for photocatalytic reduction of CO2, with the yields of 13.57 μmol g− 1 and 2.73 μmol g− 1 for CO and CH4, respectively. Using the in situ infrared test to elucidate the intermediates and the mechanism of g-C3N4/rGO/Pd (CRP) photocatalytic CO2 reduction. This paper provides a new insight into the interface design of photocatalytic materials and the application of co-catalysts.
A series of ZIF-67-C-IL catalysts were prepared using ZIF-67 and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([ BMIM]NTf2) ionic liquid as precursors. The structure of the catalysts was characterized by XRD, TEM, SEM and XPS. The catalytic performance of the catalysts for the oxygen reduction reaction (ORR) was evaluated in a three-electrode system. The results confirmed that the high-temperature treatment of the precursors resulted in the formation of N, S codoped carbon-encapsulated Co9S8 nanoparticles. To create N, S co-doped carbon coated Co9S8 nanoparticle catalysts, ionic liquids are used as sulfur and nitrogen sources. The catalytic activity of ORR can be improved using N, S co-doped carbon to prevent the aggregation of Co9S8 nanoparticles. Graphitized and N, S co-doped carbon shells are optimal for achieving high activity stability. Optimal 600-ZIF-67-C(1:1.5)-30IL catalytic activity was observed for ORR. The half-wave potential of ORR was 0.88 V vs. RHE in 0.1 mol L− 1 KOH, with a limit current density of 4.70 mA cm− 2. Similar ORR electrocatalytic activity was observed between this catalyst and commercial Pt/C (20 wt%).
This paper reports an enhanced strategy for improving the mechanical flexibility and ionic kinetic properties of a double network hydrogel based on Co2+- coordination assistance. The modified double-network hydrogel was obtained by using acrylic acid and N, N-dimethylacrylamide as monomers, adding cross-linking agents and 3D nitrogen-doped graphenes. The tensile fracture rate of the modified hydrogel was 1925% and its tensile strength was 1696 kPa. In addition, the hydrogel exhibited excellent ionic dynamics, and its application to an all-solid-state supercapacitor was able to achieve a specific capacitance of up to 182.8 F g− 1. The supercapacitor exhibited an energy density of 34.2 Wh kg− 1, even when operating at a power density of 5 kW kg− 1, highlighting its significant potential for practical applications.
Background: In healthy dentin conditions, odontoblasts have an important role such as protection from invasion of pathogens. In mammalian teeth, progenitors such as mesenchymal stem cells (MSCs) can migrate and differentiate into odontoblast-like cells, leading to the formation of reparative dentin. For differentiation using stem cells, it is crucial to provide conditions similar to the complex and intricate in vivo environment. The purpose of this study was to evaluate the potential of differentiation into odonto/ osteoblasts, and compare co-culture with/without epithelial cells. Methods: MSCs and epithelial cells were successfully isolated from dental tissues. We investigated the influences of epithelial cells on the differentiation process of dental pulp stem cells into odonto/osteoblasts using co-culture systems. The differentiation potential with/without epithelial cells was analyzed for the expression of specific markers and calcium contents. Results: Differentiated odonto/osteoblast derived from dental pulp tissue-derived mesenchymal stem cells with/without epithelial cells were evaluated by qRT-PCR, immunostaining, calcium content, and ALP staining. The expression of odonto/ osteoblast-specific markers, calcium content, and ALP staining intensity were significantly increased in differentiated cells. Moreover, the odonto/osteogenic differentiation capacity with epithelial cells co-culture was significantly higher than without epithelial cells co-culture. Conclusions: These results suggest that odonto/osteogenic differentiation co-cultured with epithelial cells has a more efficient application.
This study utilizes association rule learning and clustering analysis to explore the co-occurrence and relationships within ecosystems, focusing on the endangered brackish-water snail Clithon retropictum, classified as Class II endangered wildlife in Korea. The goal is to analyze co-occurrence patterns between brackish-water snails and other species to better understand their roles within the ecosystem. By examining co-occurrence patterns and relationships among species in large datasets, association rule learning aids in identifying significant relationships. Meanwhile, K-means and hierarchical clustering analyses are employed to assess ecological similarities and differences among species, facilitating their classification based on ecological characteristics. The findings reveal a significant level of relationship and co-occurrence between brackish-water snails and other species. This research underscores the importance of understanding these relationships for the conservation of endangered species like C. retropictum and for developing effective ecosystem management strategies. By emphasizing the role of a data-driven approach, this study contributes to advancing our knowledge on biodiversity conservation and ecosystem health, proposing new directions for future research in ecosystem management and conservation strategies.