A cyclone separator is a device that separates solid particles from a fluid using centrifugal force and gravity in its inner chamber. Among cyclone separators, the separator that uses water as a working fluid is called as hydrocyclone separator, which has been developed for the purpose of dehydrating solid mixtures with a proportion of solids floating in liquids greater than 1, such as soil, coal, and cement slurry. In this paper, a hydrocyclone was designed based on the previously proposed design method, and how different the performance is from the targeted value was investigated using the computational fluid dynamics.
We analyzed the performance of hubless rim propellers based on the number of blades, maintaining a fixed pitch ratio and expanded area ratio, using computational fluid dynamics (CFD). Thrust coefficient, torque coefficient and efficiency according to the number of blades were analyzed. In addition, the pressure distribution on the discharge and suction sides of the blade was analyzed. As the advance ratio increases, the thrust coefficient decreases. The highest thrust was shown when the advance ratio was lowest. For the three, four, five and six-blades, the torque coefficient tended to decrease as the advance ratio increased. In the case of seven and eight-blades, the torque coefficient tended to increase as the advance ratio increased. The maximum efficiency was found when the advance ratio was 0.8. When the three-blade, it showed high efficiency at all advance ratios. A high pressure distribution was observed at the leading edge of the discharge blade, and a low pressure distribution was observed at the trailing edge. Applying a hubless rim-driven thruster with the three-blade can generate higher thrust and increase work efficiency.
The importance of urban green space creation is increasingly recognized as the most realistic and efficient approach for fine dust mitigation in urban areas. Particularly considering the characteristics of domestic cities, the application of buffer green spaces along roads can maximize the efficiency of fine dust reduction without the need for separate green space creation. Accordingly, this study analyzed the fine dust mitigation effects based on the types of plantings in the central dividers and roadside trees in Jeonju City, Jeollabuk-do. To do this, we controlled various external variables of urban space and considered the planting arrangement types in the central dividers, carrying out the analysis using a CFD simulation. The simulation results confirmed that the central dividers with plantings demonstrated more effective ultrafine dust reduction than those without. Moreover, the arrangement of roadside trees showed a greater ultrafine dust reduction effect when adopting a multilayered structure compared to a single layer. Based on these findings, we concluded that installing both trees and shrubs simultaneously in the central dividers and along roads was effective for ultrafine dust mitigation. On this basis, we quantified the dust reduction effects of plants in urban street environments and proposed planting guidelines for roadside green spaces to improve air quality.
This study analyzed the flow inside floating seedling equipment for Scapharca subcrenata. Due to the aging society of fishing villages, it is impossible to continuously input the labor force. Therefore, it is necessary to improve efficiency. Scapharca subcrenata has high per capita consumption. It serves as an important aquatic food resource. Scapharca subcrenata culture tends to be highly dependent on the natural environment. Production of Scapharca subcrenata is difficult to predict with low stability. In the past, manpower directly installed bamboo nets in mudflats. The seedling equipment devised in this study is a floating type and can be freely moved on the sea according to the prediction of Scapharca subcrenata generation. The flow around the floating seedling equipment was analyzed by numerical analysis. The physical phenomena of the flow around the net inside the floating seedling equipment were visualized. As a result, the space between the floating seedling equipment and the bottom net and the space between the net groups showed a lower flow rate than the inlet flow rate. It is expected that the low flow rate of the floating seedling equipment will have a positive effect on the attachment of Scapharca subcrenata.
This study analyzed the duct characteristics of hubless rim-driven propeller (RDP) used in underwater robots. In the previous study, flow visualization experiments were performed with an advancing ratio of 0.2 to 1. The vortex at the front of the duct increased in strength while maintaining its size as the advancing ratio decreased. Therefore, it is necessary to study the optimization of the duct shape. Conventional propeller thrusters use acceleration/deceleration ducts to increase their efficiency. However, unlike conventional propellers, it is impossible to apply to airfoil acceleration/deceleration ducts due to the RDP structure. In this study, duct wake flow characteristics, thrust force, and efficiency according to the duct shape of RDP were analyzed using numerical analysis techniques. Duct design is limited and six duct shapes were designed. As a result, an optimized duct shape was designed considering duct wake flow characteristics, thrust force, and efficiency. The shape that the outlet width of the RDP was kept constant until the end of the duct showed higher thrust force and efficiency.
In this paper, numerical simulations were conducted to secure both flow distribution and uniform flow discharge through a wall mount type air sterilizer. In order to increase the reliability of the simulation results where there is no well-known validation case for air sterilizer, mesh sensitivity study was performed under the constraint that y+ set to one for k-w SST turbulent modeling for both the air sterilizer and the fan. The installation of various guides and structures was reviewed in the point of flow distribution and pressure drop inside the sterilizer, and the exhaust pressure conditions were predicted to secure uniform flow discharge at outlets. This study has been done based on the computational analysis during the development stage of the air sterilizer, and the results will be verified through physical testing after production of prototype.
Failure to comply with the performance test requirements for the centrifugal pumps at power plants often results in performance dissatisfaction as a result of field tests. This study proposed a method of reducing the uncertainty of the field test results by evaluating the systematic error in the measurement system caused by failure to follow the test requirements using the computational fluid dynamics(CFD) technique. As a result of the evaluation of the systematic error and reflecting it in the performance test data, it was confirmed that the error occurred at a constant rate with respect to the flowrate and that the pump, which showed a difference in performance actually had the same performance.
In order to analyze the pressure drop of the fluid passing through the hydraulic coupler, a flow model using the Computational Fluid Dynamics (CFD) analysis technique was developed and the fluid flow rate and pressure distribution inside the coupler were analyzed. The analysis model was corrected by comparing the pressure drop measurement using a 6.35mm hydraulic coupler with the ISO reference value and the simulation prediction value. Using the calibrated model, the flow rate and pressure drop of 13 types of hydraulic couplers distributed on the market were analyzed, and their performance was determined by comparing them with ISO reference values. In the case of type A coupler, the pressure drop was generally higher than the ISO reference value, and in the case of type B coupler, the pressure drop was similar to or lower than the ISO reference value. It was confirmed that the complex flow analysis inside the hydraulic coupler could be easily performed through computational fluid dynamics (CFD) modeling, and based on this, problems could be identified and performance could be improved performance.
본 논문은 CFD 해석법을 이용하여 사고 선박의 손상부 형상에 따른 기름 유출량 변화를 예측하고, 이론 추정식에서 이를 고려 할 수 있는 방출계수 도출 결과를 소개한다. Froude수와 Reynolds수 상사를 만족하는 조건에서 다상유동 해석법을 사용하여 모형선 크기의 기름 유출 문제를 다루었다. 수치해석 결과는 알려진 실험 결과와 비교하여 검증하였다. 수학적 형상들로 정의한 손상부 형상의 변화와 함께 손상부 가로세로비와 기름탱크 두께의 변화가 기름 유출 유동에 미치는 영향을 조사하였다. 보다 현실적인 상황을 고려하기 위해 손상부의 찧어진 철판의 영향에 대한 해석도 포함하였다. 수치해석 결과를 통해 사고 선박의 손상부 형상에 따른 기름 유출량의 변화를 확인하였으며, 다양한 손상부 형상이 가지는 점성 영향을 방출계수로 정량화하여 추출하였다. 본 논문에서 제시하는 방출계수에 대한 검 증을 위하여 알려진 기름 유출량 주정식에게 적용하였으며, CFD 해석과 좋은 일치를 얻었다.
This paper studies the flow characteristics inside the low-temperature carbonization(LTF) including sealing chamber with labyrinth. The flow behavior inside the furnace was analyzed according to different labyrinth shapes. The effects of labyrinth baffle number, and clearance between upper and lower baffles in the sealing chamber were investigated. The large vortex and stagnation region are generated in the chamber when the gap between the baffle and baffle is small. As a result, the gas discharge flow rate can be increased by 29.4% when the flow space of labyrinth is made 75% of the baffle length.
In this study, gas flow pattern and temperature distribution in a laboratory scale low temperature furnace for carbonization were numerically analyzed. The furnace was designed for testing carbonization process of carbon fibers made from polyimide(PI) precursor. Nitrogen gas was used as a working gas and it was treated as an ideal gas. Three-dimensional computational fluid dynamics analysis for steady state turbulent flow was used to analyze flow pattern and temperature field in the furnace. The results showed that more uniform velocity profile and axisymmetric temperature distribution could be obtained by varying mass flow rate at the inlets.
블레이드 개발에서 매우 중요한 요소는 에어포일 설계이다. 본 연구에서는 DesignFoil 프로그램을 통한 에어포일의 최적화에 관한 연구를 다룬다. 이를 위해, NACA 4-digit series 및 5-digit series 공식을 이용하여 좌표 값을 도출시키고, 이를 통해 구해진 초기 단면형상을 DesignFoil 프로그램에 입력시킨 뒤, 각 매개 변수(피칭 모멘트, 레이놀즈 수, 마하 수, 두께 비율 및 받음각)에 대하여 양력 대 항력 비율을 최적화시켰다. 그 결과, 에어포일 단면 좌표를 최적화시키고, VisualFoil 프로그램을 통해 에어포일의 성능을 확인하고 블레이드 형상을 결정했다.
국내 자연재난 피해의 50%는 태풍에 의해 발생하며, 최근 태풍에 동반된 강풍에 의한 인명 피해가 빈번하게 발생하고 있다. 재난 피해 저감을 위한 재난 안전 교육의 일환으로 국내의 강풍체험시설은 대부분 제한된 공간에 설치되어 체험을 위한 내부 유동장의 효과적 설계가 필요하다. 이를 위해 본 연구에서는 전산유체역학 기법을 이용하여 강풍 체험장의 내부 유동장을 해석하였으며, 내부 구조 형상으로 인해 발생하는 압력 저항을 공간 저항으로 정의하였다. 기존 강풍 체험장에 대한 분석 결과 기존의 수평 방향 풍로 구조로 인해 매우 불균질한 내부 유동장이 형성되고 큰 공간 저항이 발생함을 확인하였다. 이를 개선하기 위하여 풍로를 수직 방향으 로 변경함으로써 공간 저항을 80% 가까이 감소시킬 수 있음을 확인하였으며, 체험장 내부 유동장의 균질도도 크게 향상되어 실질적 강풍 체험장 구현이 가능함을 확인하였다.
In this paper, the effect of the turbulence intensity in across-wind direction on the wind load in CFD(Computational fluid dynamics) simulation was analyzed. ‘Ansys fluent’ software was used for CFD simulation. And the fluctuating wind speed applied to the simulation was generated according to Korean Design Standard and Von Karman wind turbulence model. The turbulence intensity in across-wind direction for simulation was applied from 0 to 100% of the turbulence intensity in along-wind direction. The analysis results showed that the turbulence intensity in across-wind direction had a particularly great effect on the wind load in across-wind direction.
This study analyzes the internal temperature characteristics of heater module using a numerical method when the constant heat flux and heat flux time are applied to the surface heating element. The horizontal and vertical dimensions of heater module are 100mm, and the height is 5mm. The heat flux is 10,000W/m2, 15,000W/m2, and 20,000W/m2, and heat flux time is 5 seconds, 10 seconds, 15 seconds, 20 seconds, 30 seconds and 50 seconds, respectively. When the heat flux time was 50 seconds, the temperature of the surface heating element rose to 120.5°C, while the skin epidermis temperature rose 1.7°C. As a result, the surface temperature of the surface heating element increased greatly in the horizontal direction, while it increased low in the depth direction. This is because the heat conduction of the surface heating element is transmitted in the X-Y plane direction, and the thermal conductivity of the pet(polyethylene terephthalate) film and insulation sheet under the surface heating element is very low. when the heat flux at the surface heating element is 20,000W/m2, the skin's epidermal temperature rises up to 0.82℃ compared to 10,000W/m2 and 15,000W/m2.
The objectives of this study were to develop the optimal structures of recirculating aquaculture tank for improving the removal efficiency of solid materials and maintaining water quality conditions. Flow analysis was performed using the CFD (computational fluid dynamics) method to understand the hydrodynamic characteristics of the circular tank according to the angle of inclination in the tank bottom (0°, 1.5° and 3°), circulating water inflow method (underwater, horizontal nozzle, vertical nozzle and combination nozzle) and the number of inlets. As the angle in tank bottom increased, the vortex inside the tank decreased, resulting in a constant flow. In the case of the vertical nozzle type, the eddy flow in the tank was greatly improved. The vertical nozzle type showed excellent flow such as constant flow velocity distribution and uniform streamline. The combination nozzle type also showed an internal spiral flow, but the vortex reduction effect was less than the vertical nozzle type. As the number of inlets in the tank increased, problems such as speed reduction were compensated, resulting in uniform fluid flow.
본 논문은 하수관 보강 방법 중 보강튜브경화공법(CIPP)의 종점부 미경화 문제를 해결하기 위해 설계된 증기이송튜브 시스템에 대한 유동해석 결과를 보고한다. 설계된 증기이송튜브의 유동해석을 위해 SolidWorks Flow Simulation을 이용하여 해석을 수행하였다. 100mm, 150mm, 200mm의 직경을 갖는 증기이송튜브에 대한 유동 흐름 및 온도 분포가 유동을 해석을 통해 검토되었다. 해석 결과를 통해 증기이송튜브의 직경이 증가함에 따라 경화온도를 만족하는 CIPP 내부 길이가 증가하는 것이 확인되었다. 또한, 직경 200mm를 제외한 모든 직경의 증기이송튜브의 입구에서 증기 역류 현상이 나타남을 확인하였다. 이에 증기이송튜브의 최적 직경은 200mm로 결정되었으며, 이에 대한 유동해석을 통해 증기주입을 시작하고 350초 경과 이후에 CIPP 내 모든 길이에서 경화온도를 만족하는 것을 확인하였다.