In the DBC (direct bonding of copper) process the oxygen partial pressure surrounding the AlN/Cu bonding pairs has been controlled by Ar gas mixed with oxygen. However, the direct bonding of Cu with sound interface and good adhesion strength is complicated process due to the difficulty in the exact control of oxygen partial pressure by using Ar gas. In this study, we have utilized the in-situ equilibrium established during the reaction of + 1/2 by placing powder bed of CuO or around the Cu/AlN bonding pair at . The adhesion strength was relatively better in case of using CuO powder than when powder was used. Microstructural analysis by optical microscopy and XRD revealed that the interface of bonding pair was composed of , Cu and small amount of CuO phase. Thus, it is explained that the good adhesion between Cu and AlN is attributed to the wetting of eutectic liquid formed by reaction of Cu and .
Embedding of active devices in a printed circuit board has increasingly been adopted as a future electronic technology due to its promotion of high density, high speed and high performance. One responsible technology is to embedded active device into a dielectric substrate with a build-up process, for example a chipin-substrate (CiS) structure. In this study, desmear treatment was performed before Cu metallization on an FR-4 surface in order to improve interfacial adhesion between electroless-plated Cu and FR-4 substrate in Cu via structures in CiS systems. Surface analyses using atomic force microscopy and x-ray photoemission spectroscopy were systematically performed to understand the fundamental adhesion mechanism; results were correlated with peel strength measured by a 90o peel test. Interfacial bonding mechanism between electrolessplated Cu and FR-4 substrate seems to be dominated by a chemical bonding effect resulting from the selective activation of chemical bonding between carbon and oxygen through a rearrangement of C-C bonding rather than from a mechanical interlocking effect. In fact, desmear wet treatment could result in extensive degradation of FR-4 cohesive strength when compared to dry surface-treated Cu/FR-4 structures.
A Cu-Fe-P copper alloy was processed by accumulative roll-bonding (ARB) for ultra grain refinement and high strengthening. Two 1mm thick copper sheets, 30 mm wide and 300 mm long, were first degreased and wire-brushed for sound bonding. The sheets were then stacked on top of each other and roll-bonded by about 50% reduction rolling without lubrication at ambient temperature. The bonded sheet was then cut into two pieces of the same dimensions and the same procedure was repeated for the sheets up to eight cycles. Microstructural evolution of the copper alloy with the number of the ARB cycles was investigated by optical microscopy (OM), transmission electron microscopy(TEM), and electron back scatter diffraction(EBSD). The grain size decreased gradually with the number of ARB cycles, and was reduced to 290 nm after eight cycles. The boundaries above 60% of ultrafine grains formed exhibited high angle boundaries above 15 degrees. In addition, the average misorientation angle of ultrafine grains was 30 degrees.
1.5 μm-thick copper films deposited on silicon wafers were successfully bonded at 415˚C/25 kN for 40 minutes in a thermo-compression bonding method that did not involve a pre-cleaning or pre-annealing process. The original copper bonding interface disappeared and showed a homogeneous microstructure with few voids at the original bonding interface. Quantitative interfacial adhesion energies were greater than 10.4 J/m2 as measured via a four-point bending test. Post-bonding annealing at a temperature that was less than 300˚C had only a slight effect on the bonding energy, whereas an oxygen environment significantly deteriorated the bonding energy over 400˚C. This was most likely due to the fast growth of brittle interfacial oxides. Therefore, the annealing environment and temperature conditions greatly affect the interfacial bonding energy and reliability in Cu-Cu bonded wafer stacks.
The sinter-bonding behavior of iron based powder mixtures was investigated. To produce the green compacts to be joined the following powders based on AB grade NC 100.24 plain iron powder were used: NC 100.24 as delivered, PNC 30, PNC 60 and NC 100.24 + 4%Cu powder mixtures. Dimensional behaviour of all those materials during the sintering cycle was monitored by dilatometry. Simple ring shaped specimens as the outer parts and cylindrical as the inner parts were pressed. The influence of parts' composition on joining strength was established. Diffusion of alloying elements: copper and phosphorous, across the bonding surface was controlled by metallography, SEM and microanalysis.
활성금속브레이징법으로 계면접합된 AlN/Cu 접합체의 잔류응력 완화에 미치는 Mo 중간재의 영향을 조사하였다. 유한요소법에 의한 응력 해석과 접합체 강도 측정, 파단면의 관찰을 행하였으며, 이들 결과를 비교, 분석하였다. 응력 해석 결과로부터, Mo 중간재를 사용할 경우 최대 잔류 주응력이 형성되는 위치가 AlN/삽입금속 계면으로부터 삽임금속/Mo 계면을 통하여 Mo 내부로 이동됨을 확인하였다.접합체의 자유표면에 형성되는 인장성분의 응력집중 위치는 Mo 중간재 두께가 증가됨에 따라 Cu/Mo 계면과 Mo/AlN 계면의 두 곳으로 분리되었으며, AlN측 잔류응력의 크기는 크게 감소하였다. 중간재를 사용하지 않은 경우 최대 접합강도가 52 MPa로 낮은 강도를 보였으나, 두께 400μm 이상의 Mo 중간재를 사용한 접합체의 경우, 200 MPa 이상, 최대 275 MPa의 접합강도를 얻을 수 있었다.
Ag-Cu-Ti 삽입금속을 이용하여 제조된 AlN/Cu와 AlN/W 활성금속브레이징 접합체의 잔류응력을 유한요소법으로 탄성 및 탄소성 해석을 행하여 그 결과를 접합강도 측정 결과와 파단 거동 관찰 결과와 비교, 분석하였다. 최대 잔류 주응력의 크기는 AlN/W 접합체보다 모재간 열팽창계수 차이가 큰 AlN/Cu 접합체에서 더 크게 나타났으며, 접합계면에 인접한 AlN 세라믹스 자유표면에 인장 성분의 응력집중이 확인되었다. 모재와 삽입금속의 탄소성 변형을 모두 고려할 경우, AlN/Cu 접합체의 경우 연질의 삽입금속에 의해 최대 잔류 주응력이 감소하여 소성변형에 의한 응력완화 효과가 있음을 확인하였으나, 100μm 이상으로 삽입금속 두께를 증가시키더라도 잔류 주응력의 크기는 더 이상 크게 감소하지 않았다. 측정된 최대 접합강도는 AlN/Cu와 AlN/W 접합체에서 각각 52 MPa와 108 MPa이었으며, 파단 형태는 AlN/Cu 접합체는 AlN 자유표면으로부터 AlN 내부로 큰 각도를 이루면 진행되는 돔형의 파단이, AlN/W 접합체에서는 접합계면의 삽입금속층을 따라 AlN 측에서 파단이 일어나는 형태를 보였다.
동과 동을 저온에서 단시간내에 접합시키는 가능성을 검토하기 위해서 직류 자기 스퍼터링을 이용한 코팅한 주석 및 주석-잡 합금층을 중간층으로 사용하였다. 접합은 대기중 200-350˚C의 온도에서 수행되었고 접합온도에 도달직후 바로 냉각하였다. 접합 계면에는 액상의 주석과 고상의 동간의 반응에 의해 n-상(Cu6Sn5) 및 ε-상(Cu3Sn)으로 구성된 금속간화함물 층이 형성되었다. 전단강도로 측정된 접합강도는 접합온도에 따라 비례적으로 증가하지만 300˚C 이상에서 감소하였다. 접합강도는 2.8-6.2MPa 범위로 나타났으며, 중간층합금 성분에 따른 접합계면에서의 금속간화합물의 생성거동과 관련지어 설명되었다. 실험결과 실용적인 접합법으로서 저온 단시간 접합의 가능성이 확인되었다.
본 연구에서는 Cu-Cu2O의 공정반응에 의한 구리와 알루미나의 직접접합에 대하여 연구 하였다. 1.5×10-1torr, 1015˚C에서 산화시킨 후 10-3torr, 1075˚C에서 접합시킨 시편의 접합력과 계면특성을 인장시험, SEM, EDS 및 XRD를 통하여 분석하였다. 3분 산화시켜 접합하면 우수한 접합강도를 보이며 산화시간이 이보다 짧거나 길면 결합력은 저하하였다. 과단은 알루미나 공정조직 계면에서 발생하였으며 파단후 Al2O3표면에는 Cu쪽에서 빠져나간 Cu2O nodule의 존재하였는 바 접합력은 Cu2O-Al2O3계면보다는 Cu-Cu2O계면에 좌우됨을 보여주고 있다. 접합력은 접합시간에 따라 완만한 증가를 보였으며 CuAl2O4및 CuAlO2의 반응생성물이 접합중 형성되었다.