목적: 항균제 polyhexamethylene Biguanide(PHMB), epigallocatechin gallate(EGCG) 및 PHMB/EGCG 혼합물의 각막상피세포(primary human corneal epithelial cells, HCEpiCs)에 대한 급성독성을 평가하고자 하였다.
방법: 각막상피세포를 0.00001~0.005% PHMB, 0.001~5% EGCG 및 0.00005% PHMB/0.05% EGCG 혼합물이 각각 포함된 배양액에서 30분, 60분, 120분 및 240분 동안 배양하였다. 배양한 각막상피세포를 고정한 다음 Draq 5로 염색하고 공초점현미경과 ImageXpress UltraTM를 이용하여 세포형태를 관찰하여 세포 생존율과 세포자살(apoptosis)을 비교하였다.
결과: 배양된 각막상피세포는 0.00005% 이하의 PHMB 농도 및 0.05% 이하의 EGCG 농도에서는 세포 독성이 나타나지 않았다. 0.00005% PHMB/0.05% EGCG 혼합물이 포함된 배양액에서 급성 세포독성은 관찰되지 않았으나 240분 배양시킨 경우에는 손상된 각막상피세포 수가 증가하고 생존 세포의 수는 감소하였다.
결론: 항균 시너지 효과를 갖는다고 보고된 0.00005% PHMB/0.05% EGCG 혼합물의 경우 각막상피세포에 대한 급성독성은 없었으나 만성효과에 대해서는 추가적인 연구가 필요할 것으로 생각된다.
Resveratrol (3,4',5,-trihydroxystilbene), a phytoalexin present in grapes, exerts a variety of actions to reduce superoxides, prevents diabetes mellitus, and inhibits inflammation. Resveratrol acts as a chemo-preventive agent and induces apoptotic cell death in various cancer cells. However, the role of resveratrol in odontoblastic cell differentiation is unclear. In this study, the effect of resveratrol on regulating odontoblast differentiation was examined in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. Resveratrol significantly accelerated mineralization as compared with the control culture in differentiation of MDPC-23 cells. Resveratrol significantly increased expression of ALP mRNA as compared with the control in differentiation of MDPC-23 cells. Resveratrol significantly accelerated expression of ColⅠmRNA as compared with the control in differentiation of MDPC-23 cells. Resveratrol significantly increased expressions of DSPP and DMP-1 mRNAs as compared with the control in differentiation of MDPC-23 cells. Treatment of resveratrol did not significantly affect cell proliferation in MDPC-23 cells. Results suggest resveratrol facilitates odontoblast differentiation and mineralization in differentiation of MDPC-23 cells, and may have potential properties for development and clinical application of dentin regeneration materials.
Metformin (1,1-dimethylbiguanide hydrochloride), derived from French lilac (Galega officinalis), is a first-line anti-diabetic drug prescribed for patients with type 2 diabetes. However, the role of metformin in odontoblastic cell differentiation is still unclear. This study therefore undertook to examine the effect of metformin on regulating odontoblast differentiation in MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells. As compared to controls, metformin significantly accelerated the mineralization, significantly increased and accelerated the expressions of ALP and Col I mRNAs, and significantly increased the accelerated expressions of DSPP and DMP-1 mRNAs, during differentiation of MDPC-23 cells. There was no alteration in cell proliferation of MDPC-23 cells, on exposure to metformin. These results suggest that the effect of metformin on MDPC-23 mouse odontoblastic cells derived from mouse dental papilla cells, facilitates the odontoblast differentiation and mineralization, without altering the cell proliferation.
Recently, extensive research has been performed in the field of orthopedic medicine to develop cell-based therapies for the restoration of injured bone tissue. But there has been rarely reported about rehabilitaton of oral and maxillofacial bone defect using self-derived osteoblasts. Normal human osteoblast cell(NHost) was previously established into marrow-derived human mesenchymal stem cells for their capacity to proliferate and differentiate into osteoblasts under various culture conditions. The purpose of this study was to examine proliferation and differentiation of NHosts effected by growth factors with ALP activity and RT-PCR. After NHosts were cultured under basal and osteogenic medium at 37℃ and 5% CO2, they were analyzed by ALP activity and RT-PCR. BMP-2 under osteogenic medium decreased growth rate of NHosts compared to under osteogenic medium. BMP-2 under osteogenic medium induced osteoblastic differentiation in NHosts by increased ALP activity. The differentiating capacity of NHosts under osteogenic medium showed that NHosts expressed higher mRNA expression levels of OSX and OCN, while that of RUNX2 decreased after BMP-2 treatment. It suggested that NHosts having characteristics of osteoprecursor cells might be more advanced in their osteogenesis development by BMP-2, making NHosts an interesting biological tool for treatment of skeletal defects and diseases of oral and maxillofacial bone.
Pluripotency of human embryonic stem cell (hESC) is one of the most valuable ability of hESCs for applying cell therapy field, but also showing side effect, for example teratoma formation. When transplant multipotent stem cell, such as mesnchymal stem cell (MSC) which retains similar differentiation ability, they do not form teratoma in vivo, but there exist limitation of cellular source supply. Accordingly, differentiation of hESC into MSC will be promising cellular source with strong points of both hESC and MSC line. In this study, we described the derivation of MSC like cell population from feeder free cultured hESC (hESC- MSC) using direct differentiation system. Cells population, hESC-MSC and bone marrow derived MSC (BM-MSC) retained similar characteristics in vitro, such as morphology, MSC specific marker expression and differentiation capacity. At the point of differentiation of both cell populations, differentiation rate was slower in hESC-MSC than BM-MSC. As these reason, to verify differentially expressed molecular condition of both cell population which bring out different differentiation rate, we compare the molecular condition of hESC-MSC and BM-MSC using 2-D proteomic analysis tool. In the proteomic analysis, we identified 49 differentially expressed proteins in hESC-MSC and BM-MSC, and they involved in different biological process such as positive regulation of molecular function, biological process, cellular metabolic process, nitrogen compound metabolic process, macromolecule metabolic process, metabolic process, molecular function, and positive regulation of molecular function and regulation of ubiquitin protein ligase activity during mitotic cell cycle, cellular response to stress, and RNA localization. As the related function of differentially expressed proteins, we sought to these proteins were key regulators which contribute to their differentiation rate, developmental process and cell proliferation. Our results suggest that the expressions of these proteins between the hESC-MSC and BM-MSC, could give to us further evidence for hESC differentiation into the mesenchymal stem cell is associated with a differentiation factor. As the initial step to understand fundamental difference of hESC-MSC and BM-MSC, we sought to investigate different protein expression profile. And the grafting of hESC differentiation into MSC and their comparative proteomic analysis will be positively contribute to cell therapy without cellular source limitation, also with exact background of their molecular condition.
Several cloned animals have been produced using somatic cell nuclear transfer (SCNT) and have interested in producing the transgenic cloned animals to date. But still its efficiency was low due to a number of reasons, such as sub-optimal culture condition, aberrant gene expression and nuclear reprogramming. The purpose of this study was to analyze gene expression pattern in in vitro fertilized (IVF) or SCNT pre-implantation embryos. IVF- or SCNT-embryos were cultured in media supplemented with different proteins (FBS and BSA) or energy sources (glucose or fructose). Blastocysts from IVF or SCNT were analyzed using semi-quantitative RT-PCR in terms of developmentor metabolic-related genes. Culture medium supplemented different proteins or energy sources had affected on the expression of developmental or metabolic genes in the SCNT blastocysts.
The origin of squamous cell components in salivary gland tumor has been not yet clarified in detail. The squamous cell differentiation from adenocarcinoma has been reported in various carcinoma by HPV transfection in vitro. The adenocarcinoma cells adjacent to the squamous cell carcinoma components were positive for HPV. This is thought to indicate that after adenocarcinoma cells are transfected with HPV, they undergo morphological changes, and that squamous cell differentiation follows. The purpose of this study were to examine the effects of HPV-16 E6/E7 gene transfection into SGT cell line from human salivary gland adenocarcinoma, and to study the relation between the E6/E7 gene and squamous differentiation. Plasmid pBR322 containing HPV-16 was transfected into cultured SGT cell line using lipofectin method. Hygromycin was used as a selection marker. The presence of HPV E6/E7, transglutaminase 1, and involucrin mRNAs and protein in E6/E7 gene transfected cells was investigated by RT-PCR and immunoslot blot method. The apoptosis index was analysed by flow cytometry. The growth rate of E6/E7 gene transfected cells was reduced. E6/E7 transfected SGT cells increased apoptosis index. Involucrin and TGase I mRNAs by the squamous cell differentiation was most conspicuous in the E6/E7 gene transfected cell compared with non transfected cells. Squamous cell differentiation demonstrated in the transfectedSGT cell line, which expressed E6/E7 fusion gene mRNA.E6/E7 gene transfected cells showed squamous cell differentiation, expressing involucrin and TGase 1 protein by immunoslot blotting. The transfected SGT cell which expressed E6/E7 gene mRNA showed the squamous cell differentiation particularly clearly, and apoptosis was also demonstrated. It suggested that E6/E7 gene transfection into human salivary gland adenocarcinoma cells might induce clear squamous cell differentiation and contribute to study the pathogenesis of human salivary gland adenocarcinoma.
Human eryhropoietin (EPO) is acidic glycoprotein hormone that plays key role in hematopoiesis by facilitating differentiation of erythrocyte and formation of hemoglobin (Hb) and is used for the treatment of anemia. Human EPO is consist of 166 amino acids which is modified by three N-glycosylations (24, 38, 83) and single O-glycosylation (126). N-glycosylation is reported to be related to the cellular secretion and activity of EPO. In this study, we examined effects of mutagenesis in glycosylation site of recombinat hEPO for the cellular secretion during production from cultured CHO cell. We produced rhEpo which was cloned by PCR from human liver cDNA (TaKaRa) in cultured CHO cell. Using supernatant of the culture, ELISA assay and western analysis were performed. To estimate biological activity, 20IU of rhuEpo was subcutaneously injected into four ICR mice. After 8 days, HCT level was increased average 13 per cent, RBC was increased ca. 2106//. In disease model Rat (anemia c-kit, WSRC-WS/WS), HCT was increased ca. 12%, RBC was increased ca. 1.6106//. These results suggests that rhEpo we produced has biological activity. To remove glycosylation site by substituting 24, 38, 83, and 126th asparagine (or serine) with glutamic acid, overlapping -extension site-directed mutagenesis was performed. To add novel glycosylation sites, 69, 105th leucine was mutated to asparagine. Mutant EPO construct was transfected into CHO cell. Supernatant of the cell culture was analyzed using ELISA assay with monoclonal anti-EPO antibody (Medac, Germany). Since, several reports for mutagenesis of glycosylation sites showed case-by-case results, we examined both transient expression and stable expression. Addition of novel glycosylation sites resulted no secretion while deletion mutants had little effect except some double deletion mutants (24/83 and 38/83) and triple mutant. We suggest that not single but combination of glycosyl group affect secretion of EPO.
Background : From 2000 years ago, Panax ginseng is identified as precious pharmaceutical plant. Depend on growing environment, the name would be vary. For instance, it is called "mountain cultured ginseng (jangnoesam)" which is artificially grown ginseng, "Cultured ginseng (jaebaesam)" which refer to the ginseng grown in the forest, and lastly "Wild ginseng (sansam)" which inhabits in deep mountain. The main active compounds in the Panax ginseng is called ginsenoside and many researches have been performing in biological field. However, most studies focus on functional ability of ginseng. In this study, to seek the suitable extraction condition and antioxidant activity, cell cultured Panax ginseng was extracted according to different ethanol concentration and extraction time. Methods and Results : To establish the optimal extraction condition, the sample was pulverized into 500 μm and added 10% (v/v), 30% (v/v), 50% (v/v), 70% (v/v) and, 90% (v/v) EtOH. After that, the samples are extracted in different time by ultrasonic bath (Power sonic 520, Hwashin Co., Korea). The extracts was filtered by Whatman No. 2 filtering paper. Eventually, the saponin was separated by n-butanol as the ginsenoside, the combination of terpenoid and sugar. The extraction yield of 90% cell cultured panax ginseng EtOH extract was 7.36±0.33%, which was the lowest extraction yield and simultaneously, 10% EtOH extract showed 1.8 times more yield that of 90% EtOH extract. The saponin extraction yield revealed 10% and 70% EtOH extract showed 1.64±0.06% and 3.13±0.08%, respectively. Conclusion : The suitable extraction yield in cell cultured panax ginseng and saponin were evaluated by different extraction condition such as ethanol concentration and extraction time. As a result, when 10% EtOH was applied as solvent, the yield was doubles of 90% EtOH extract. As ethanol became high concentrations, the extraction yield was gradually increased. Among them, crude saponin, the main active compounds in Panax ginseng was extracted the most by 70% EtOH and that value was 3.13±0.08%.
Here we report the protective activity of cultured Acer tegmentosum cell extract against liver damage in rat intentionally instigated by D-galactosamine. Local fat degeneration and infiltration of inflammatory cells were significantly decreased in cultured A. tegmentosum cell extract administered rat. In addition, acutely increased AST, ALT, LDH, ALP activities and lipid peroxidation and lipid content by liver damage were recovered in experimental rat administrated with A. tegmentosum extract. These results showed that cultured A. tegmentosum cell extract has a role in blood enzyme activation and lipid content restoration within damaged rat liver tissues. Moreover expression rate of TNF-α which accelerates inflammation and induces tissue damage and necrosis was significantly decreased. Also activities of antioxidant enzymes were more effectively upregulated comparing to those of the control group induced hepatotoxicity. All data that cultured A. tegmentosum cell extract has a preventive role against liver damages such as inflammation, tissue necrosis in rats by improving activities of blood enzymes, antioxidant enzymes and modulating expression of inflammation factor, suggest that cultured Acer tegmentosum cell extract is an effective medicinal resource for restoration of hepatotoxicity.
In order to adapt to various environmental stresses, plants have employed diverse regulatory mechanisms of gene expression. Epigenetic changes, such as DNA methylation and histone modifications play an important role in gene expression regulation under stress condition. It has been known that some of epigenetic modifications are stably inherited after mitotic and meiotic cell divisions, which is known as stress memory. To understand molecular mechanisms underlying stress memory mediated by epigenetic modifications, we developed Arabidopsis suspension-cultured cell lines adapted to high salt by stepwise increases in the NaCl concentration up to 120 mM. Adapted cell line to 120 mM NaCl, named A120, exhibited enhanced salt tolerance compared to unadapted control cells (A0). Moreover, the salt tolerance of A120 cell line was stably maintained even in the absence of added NaCl, indicating that the salt tolerance of A120 cell line was memorized even after the stress is relieved. By using salt adapted and stress memorized cell lines, we intend to analyze the changes of DNA methylation, histone modification, transcriptome, and proteome to understand molecular mechanisms underlying stress adaptation as well as stress memory in plants.
Human embryonic stem (ES) cells are a potential source of cells for developmental studies and for a variety of applications in transplantation therapies and drug discovery. However, human ES cells are difficult to culture and maintain at a large scale, which is one of the most serious obstacles in human ES cell research. Culture of human ES cells on MEF cells after disassociation with accutase has previously been demonstrated by other research groups. Here, we confirmed that human ES cells (H9) can maintain stem cell properties when the cells are passaged as single cells under a feeder-free culture condition. Accutase-dissociated human ES cells showed normal karyotype, stem cell marker expression, and morphology. We prepared frozen stocks during the culture period, thawed two of the human ES cell stocks, and analyzed the cells after culture with the same method. Although the cells revealed normal expression of stem cell marker genes, they had abnormal karyotypes. Therefore, we suggest that accutase-dissociated single cells can be usefully expanded in a feeder-free condition but chromosomal modification should be considered in the culture after freeze-thawing.
In order to adapt to various environmental stresses, plants have employed diverse regulatory mechanisms of gene expression. Epigenetic changes, such as DNA methylation and histone modifications play an important role in gene expression regulation under stress condition. It has been known that some of epigenetic modifications are stably inherited after mitotic and meiotic cell divisions, which is known as stress memory. To understand molecular mechanisms underlying stress memory mediated by epigenetic modifications, we developed Arabidopsis suspension-cultured cell lines adapted to high salt by stepwise increases in the NaCl concentration up to 120 mM. Adapted cell line to 120 mM NaCl, named A120, exhibited enhanced salt tolerance compared to unadapted control cells (A0). Moreover, the salt tolerance of A120 cell line was stably maintained even in the absence of added NaCl, indicating that the salt tolerance of A120 cell line was memorized even after the stress is relieved. By using salt adapted and stress memorized cell lines, we intend to analyze the changes of DNA methylation, histone modification, transcriptome, and proteome to understand molecular mechanisms underlying stress adaptation as well as stress memory in plants.
Xanthine oxidase(XO)/√hypoxanthine(HX)에 대한 저먼캐모마일(Matricaria chamomile L., German chamomile)추출물에 대한 영향을 인체피부멜라닌세포(SK-MEL-3)를 배양한 후 세포부착율을 비롯한 DPPH-자유기 소거능(DPPH-radical scav-enging activity), 티로시나제의 활성, 총멜라닌량의 정량 및 광학현미경적 관찰에 의하여 조사하였다. 본 연구에서 XO/HX는 배양 SK-MEL-3세포에 처리한 농도에 비례하여 유의한 세포부착율의 감소를 나타낸 반면, 저먼캐모마일 추출물은 XO/HX에 의하여 감소된 세포부착율의 유의한 증가와 자유기 소거능을 나타냄으로서 XO/HX의 산화적 손상에 대한 방어효과를 나타냈다. 한편, 배양 SK-MEL-3세포에서 XO/HX에 대한 저먼캐모마일 추출의 멜라닌합성능을 조사하기 위하여 티로시나제의 활성 및 총멜라닌량을 측정하였다. 그 결과 80μg·mL-1, 또는 160μg·mL-1의 저먼캐모마일 추출물의 전 처리에서 XO/HX의 처리군에 비하여 유의한 티로시나제활성 감소와 총멜라닌량의 감소를 나타냈다. 한편, 광학현미경적 관찰에 있어서 저먼캐모마일 추출물을 처리한 실험군은 XO/HX만을 처리한 실험군에 비하여 세포수와 세포돌기가 더 많이 증가한 것으로 관찰되었다. 이상의 결과로 부터 XO/HX는 배양 SK-MEL-3세포에 독성효과를 나타냈으며, 저먼캐모마일 추출물은 XO/HX의 세포독성에 대한 방어효과 및 항멜라닌화를 나타냈다.