기후변화 영향으로 이상고수온, 태풍, 홍수, 가뭄 등 재난 및 안전 관리기술은 지속적으로 고도화를 요구받고 있으며, 특히 해 수면 온도는 한반도 주변에서 발생되는 여름철 적조 발생과 동해안 냉수대 출현, 소멸 등에 영향을 신속하게 분석할 수 있는 중요한 인자 이다. 따라서, 본 연구에서는 해수면 온도 자료를 해양 이상현상 및 연구에 적극 활용되기 위해 통계적 방법과 딥러닝 알고리즘을 적용하 여 예측성능을 평가하였다. 예측에 사용된 해수면 수온자료는 흑산도 조위관측소의 2018년부터 2022년까지 자료이며, 기존 통계적 ARIMA 방법과 Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU)을 사용하였고, LSTM의 성능을 더욱 향상할 수 있는 Sequence-to-Sequence(s2s) 구조에 Attention 기법을 추가한 Attention Long Short-Term Memory (LSTM)기법을 사용하여 예측 성능 평가를 진행하 였다. 평가 결과 Attention LSTM 모델이 타 모델과 비교하여 더 좋은 성능을 보였으며, Hyper parameter 튜닝을 통해 해수면 수온 성능을 개 선할 수 있었다.
고속철도 교량은 열차 하중에 의한 공진으로 인한 동적응답 증폭의 위험이 존재하므로 설계기준에 따른 동적해석을 통한 주행안전 성 및 승차감 검토를 반드시 수행하여야 한다. 그러나 주행안전성 및 승차감 산정 절차는 열차의 종류별로 임계속도를 포함하여 설계 속도의 110km/h까지 10km/h 간격으로 동적해석을 일일이 수행해야 하므로 많은 시간과 경비가 소요된다. 이 연구에서는 딥러닝 알 고리즘을 활용하여 별도의 동적해석 없이 주행안전성 및 승차감을 사전에 예측할 수 있는 딥러닝 기반 예측 시스템 개발하였다. 제안 된 시스템은 철도교량의 열차별, 속도별 동적해석 결과를 학습한 후 학습 완료된 신경망을 기반으로 한 예측 시스템이며, 열차속도, 교량 특성 등의 입력파라미터에 따른 주행안전성 및 승차감 산정 결과를 사전에 예측할 수 있다. 제안된 시스템의 성능을 확인하기 위 하여 단경간 직선 단순보 교량을 대상으로 한 주행안전성 및 승차감 예측을 수행하였고, 주행안전성 및 승차감 산정을 위한 상판 연직 변위 및 상판 연직가속도를 높은 정확도로 예측할 수 있음을 확인하였다.
본 연구는 화재진압 및 피난활동을 지원하는 딥러닝 기반의 알고리즘 개발에 관한 기초 연구로 선박 화재 시 연기감지기가 작동하기 전에 검출된 연기 데이터를 분석 및 활용하여 원격지까지 연기가 확산 되기 전에 연기 확산거리를 예측하는 것이 목적이다. 다음과 같은 절차에 따라 제안 알고리즘을 검토하였다. 첫 번째 단계로, 딥러닝 기반 객체 검출 알고리즘인 YOLO(You Only Look Once)모델에 화재시뮬레이션을 통하여 얻은 연기 영상을 적용하여 학습을 진행하였다. 학습된 YOLO모델의 mAP(mean Average Precision)은 98.71%로 측정되었으며, 9 FPS(Frames Per Second)의 처리 속도로 연기를 검출하였다. 두 번째 단계로 YOLO로부터 연기 형상이 추출된 경계 상자의 좌표값을 통해 연기 확산거리를 추정하였으며 이를 시계열 예측 알고리즘인 LSTM(Long Short-Term Memory)에 적용하여 학습을 진행하였다. 그 결과, 화재시뮬레이션으로부터 얻은 Fast 화재의 연기영상에서 경계 상자의 좌표값으로부터 추정한 화재발생~30초까지의 연기 확산거리 데이터를 LSTM 학습모델에 입력하여 31초~90초까지의 연기 확산거리 데이터를 예측하였다. 그리고 추정한 연기 확산거리와 예측한 연기 확산거리의 평균제곱근 오차는 2.74로 나타났다.
The increased turbidity in rivers during flood events has various effects on water environmental management, including drinking water supply systems. Thus, prediction of turbid water is essential for water environmental management. Recently, various advanced machine learning algorithms have been increasingly used in water environmental management. Ensemble machine learning algorithms such as random forest (RF) and gradient boosting decision tree (GBDT) are some of the most popular machine learning algorithms used for water environmental management, along with deep learning algorithms such as recurrent neural networks. In this study GBDT, an ensemble machine learning algorithm, and gated recurrent unit (GRU), a recurrent neural networks algorithm, are used for model development to predict turbidity in a river. The observation frequencies of input data used for the model were 2, 4, 8, 24, 48, 120 and 168 h. The root-mean-square error-observations standard deviation ratio (RSR) of GRU and GBDT ranges between 0.182~0.766 and 0.400~0.683, respectively. Both models show similar prediction accuracy with RSR of 0.682 for GRU and 0.683 for GBDT. The GRU shows better prediction accuracy when the observation frequency is relatively short (i.e., 2, 4, and 8 h) where GBDT shows better prediction accuracy when the observation frequency is relatively long (i.e. 48, 120, 160 h). The results suggest that the characteristics of input data should be considered to develop an appropriate model to predict turbidity.
In this study, the energy use of buildings was compared and analyzed by using weather data predicted with machine running techniques. Python was used as a predictive program to predict weather data and TRNSYS was used to simulate the energy usage of buildings. For weather forecasting, weather data from 1 August to 7 August were studied to forecast ambient air temperature and solar radiation. The lowest error came in seven days, with the outside air temperature standing at 1.8 percent and the solar radiation at 2.4 percent. The energy use of the building was simulated by using weather data predicted through the 7 days learning data with the lowest error. As a result , the error rate of cooling energy use was 1.92%, the sum of cooling energy and lighting energy use was 1.79%, and the building control by using predicted weather data didn’t show a big difference with just control.
증발산은 순복사 에너지를 사용하여 잠열의 형태로 수증기를 대기 중으로 수송함으로써 지구에너지 순환에 있어 중요한 요소 중의 하나이며, 증발산량은 지표유출의 두 배 정도로서 지구 물 수지에서 차지하는 비중이 매우 크다. 증발산의 지상관측은 지점에 국한되기 때문에 공간연속면 상에서의 증발산량 산출을 위하여 격자형 기상자료와 위성자료를 이용한 모델링이 오랫동안 이루어져왔다. PM(Penman-Monteith) 방정식에 기초한 METRIC(Mapping Evapotranspiration with Internalized Calibration) 모델이나 PT(Priestley-Taylor) 방정식을 이용한 MS-PT(Modified Satellite-based Priestley-Taylor) 모델 등이 주로 사용되어 왔으나, 또 하나의 대안으로서 본 연구에서는 최근 부각되고 있는 딥러닝 기법인 DNN(deep neural network)을 이용한 증발산 모델링을 수행하였다. 은닉층 구조, 손실함수, 옵티마이저, 활성화함수, L1/L2 정규화, 드롭아웃 비율 등의 최적화 과정을 거쳐서 수립한 DNN 모델은 RMSE = 0.326mm/day, 상관계수 = 0.975의 매우 양호한 정확도를 나타내었다. 이는 DNN 최적화와 함께, 국지예보모델과 위성자료로부터 증발산 기작에 관여하는 인자들을 선택하여 입력자료로 적절히 사용하였기 때문이기도 하다. 향후과제로서 훈련자료의 종류와 양을 증가시켜서 DNN 모델을 보다 정교화하는 것은 반드시 필요하다고 사료된다.
In this study, an algorithm applying deep learning to the truss structures was proposed. Deep learning is a method of raising the accuracy of machine learning by creating a neural networks in a computer. Neural networks consist of input layers, hidden layers and output layers. Numerous studies have focused on the introduction of neural networks and performed under limited examples and conditions, but this study focused on two- and three-dimensional truss structures to prove the effectiveness of algorithms. and the training phase was divided into training model based on the dataset size and epochs. At these case, a specific data value was selected and the error rate was shown by comparing the actual data value with the predicted value, and the error rate decreases as the data set and the number of hidden layers increases. In consequence, it showed that it is possible to predict the result quickly and accurately without using a numerical analysis program when applying the deep learning technique to the field of structural analysis.
PURPOSES : The study aims to predict the service life of national highway asphalt pavements through deep learning methods by using maintenance history data of the National Highway Pavement Management System. METHODS: For the configuration of a deep learning network, this study used Tensorflow 1.5, an open source program which has excellent usability among deep learning frameworks. For the analysis, nine variables of cumulative annual average daily traffic, cumulative equivalent single axle loads, maintenance layer, surface, base, subbase, anti-frost layer, structural number of pavement, and region were selected as input data, while service life was chosen to construct the input layer and output layers as output data. Additionally, for scenario analysis, in this study, a model was formed with four different numbers of 1, 2, 4, and 8 hidden layers and a simulation analysis was performed according to the applicability of the over fitting resolution algorithm. RESULTS: The results of the analysis have shown that regardless of the number of hidden layers, when an over fitting resolution algorithm, such as dropout, is applied, the prediction capability is improved as the coefficient of determination (R2) of the test data increases. Furthermore, the result of the sensitivity analysis of the applicability of region variables demonstrates that estimating service life requires sufficient consideration of regional characteristics as R2 had a maximum of between 0.73 and 0.84, when regional variables where taken into consideration. CONCLUSIONS : As a result, this study proposes that it is possible to precisely predict the service life of national highway pavement sections with the consideration of traffic, pavement thickness, and regional factors and concludes that the use of the prediction of service life is fundamental data in decision making within pavement management systems.
PURPOSES :This study aims to improve complex modeling of multivariable, nonlinear, and overdispersion data with an artificial neural network that has been a problem in the civil and transport sectors.METHODS :Deep learning, which is a technique employing artificial neural networks, was applied for developing a large bus fuel consumption model as a case study. Estimation characteristics and accuracy were compared with the results of conventional multiple regression modeling.RESULTS :The deep learning model remarkably improved estimation accuracy of regression modeling, from R-sq. 18.76% to 72.22%. In addition, it was very flexible in reflecting large variance and complex relationships between dependent and independent variables.CONCLUSIONS :Deep learning could be a new alternative that solves general problems inherent in conventional statistical methods and it is highly promising in planning and optimizing issues in the civil and transport sectors. Extended applications to other fields, such as pavement management, structure safety, operation of intelligent transport systems, and traffic noise estimation are highly recommended.
Carbonation of reinforced concrete is a major factor in the deterioration of reinforced concrete, and prediction of the resistance to carbonation is important in determining the durability life of reinforced concrete structures. In this study, basic research on the prediction of carbonation penetration depth of concrete using Deep Learning algorithm among artificial neural network theory was carried out. The data used in the experiment were analyzed by deep running algorithm by setting W/B, cement and blast furnace slag, fly ash content, relative humidity of the carbonated laboratory, temperature, CO2 concentration, Deep learning algorithms were used to study 60,000 times, and the analysis of the number of hidden layers was compared.
본 연구는 물리적 수리·수문모형의 적용이 제한적인 감조하천에서의 수위예측을 목적으로 하고 있으며, 이를 위해 한강 잠수교를 대상으로 딥러닝 오픈소스 소프트웨어 라이브러리인 TensorFlow를 활용하여 LSTM 모형을 구성하고 2011년부터 2017년까지의 10분 단위의 잠수교 수위, 팔당 댐 방류량과 한강하구 강화대교지점의 예측조위 자료를 이용하여 모형학습(2011~2016) 및 수위예측(2017)을 수행하였다. 모형 매개변수는 민감도 분석을 통해 은닉층의 개수는 6개, 학습속도는 0.01, 학습횟수는 3000번로 결정하였으며, 모형 학습 시 학습정보의 시간적 양을 결정하는 중요한 매개변수인 시퀀스길이는 1시간, 3시간, 6시간으로 변화시키며 모의하였다. 최종적으로 선행시간에 따른 모의 예측능력을 평가하기 위해 LSTM 모형의 예측 선행시간을 6개(1 ~ 24시간)로 구분하여 실측수위와 예측수위와의 비교·분석을 수행한 결과, LSTM 모형의 최적의 성능을 내 는 결과는 시퀀스길이를 1시간으로 하였을 때로 분석되었으며, 특히 선행시간 1시간에 대한 예측정확도는 RMSE는 0.065 m, NSE는 0.99로 실 측수위에 매우 근접한 예측 결과를 나타내었다. 또한 시퀀스길이에 상관없이 선행시간이 길어질수록 모형의 예측 정확도는 2017년 전기간에 걸쳐 평균적으로 RMSE 0.08 m에서 0.28 m로 오차가 증가하였으며, NSE는 0.99에서 0.74로 감소하였다.
As the importance of maintenance of reinforced concrete structures spreads, interest in the durability of structures is increasing. Among them, carbonation of concrete is one of the main deterioration factors of reinforced concrete structures. For quantitative evaluation of carbonation, many researchers are predicting carbonation considering water-cement ratio and environmental requirements. In this study, we studied the parameters based on the concrete made of ordinary Portland cement in the existing experimental data. The depth of carbonation deduced from the learning is applied to the carbonation by applying the deep learning.