Electrical stimulation (ES) is known to guide the development and regeneration of many tissues. Use of low-frequency ES for therapeutic purposes has been increasing during the last decades. Mesenchymal stem cells (MSCs) represent an appealing alternative cell source for cartilage repair. There are studies that induce differentiation into cartilage cells by treating the growth factors in stem cells or altering the properties of stem cells by genetic modification. In this study, we exposed equine adipose tissue-derived MSCs (eAD-MSCs) to ES and assessed changes in the chondrogenic differentiation potential. The cells obtained from equine adipose tissue attached to culture plates and expanded in vitro. Flow cytometric analysis at third passage indicated that the cells were strongly positive for CD44, CD90, and CD105, but negative for CD13, CD34, and CD45. Next, ES was applied to eAD-MSCs cultured under condition of high-density micromass under ES of 10 V/cm, with duration of 10 ms and a frequency of 2.0 Hz for three days. Gene expression of chondrogenic markers such as collagen type II, Aggrecan, and Sox9 was analyzed at three days of ES. As a result, we observed the differentiation potential of eAD-MSCs into chondrocytes by specific ES in absence of exogenous growth factors. We also found that ES upregulated the expression of heat shock protein 70, which affects cartilage formation. This study may contribute to the differentiation of MSCs into chondrogenic lineage under specific ES condition.
Tissue engineering has been rapidly developed in oral and maxillofacial reconstruction. Biocompatible scaffold from chemically composites seeded with stem cells is essential and several growth factors for bone formation and angiogenesis are also required. To overcome limited activity of new bone formation with scaffolds, several biomechanical stimulation methods on cells have been made to grow cells in scaffold. Several bioreactors have been developed for real tissue growth in culture laboratory. In addition to biological stimulants like BMP, growth factors and exogenous drugs, biomechanical stimulation technique has also been known as an effective method in cell differentiation. We developed our own bioreactor with tensile mechanical strains. Then we tested with it for detection of suitable biomechanical effect on the cell differentiation and proliferation. And we also compared the results with the effect of low intensity pulsed ultrasound (LIPUS). Mechanical strain group showed more rapid reaction with cell differentiation and proliferation than non-mechanical strain group. Mechanical strain groups stimulated with 0.5∼0.7Hz for 6 hours and 8 hours showed more active cell differentiation than the group with 0.5∼0.7Hz for 2.5 hours tensile strain stimulation. Group of LIPUS also showed more rapid reaction in cell differentiation and proliferation. LIPUS with 3MHz showed more cell reaction than the LIPUS group with 1MHz. Our results showed the positive effect on differentiation and proliferation of cell with mechanical tensile strain, LIPUS both.
The trans-differentiation potential of mesenchymal stem cells (MSCs) is employed, but there is little understanding of the cell source-dependent trans-differentiation potential of MSCs into corneal epithelial cells. In the present study, we induced trans-differentiation of MSCs derived from umbilical cord matrix (UCM-MSCs) and from dental tissue (D-MSCs), and we comparatively evaluated the in vitro trans-differentiation properties of both MSCs into corneal epithelial-like cells. Specific cell surface markers of MSC (CD44, CD73, CD90, and CD105) were detected in both UCM-MSCs and D-MSCs, but MHCII and CD119 were significantly lower (P < 0.05) in UCM-MSCs than in D-MSCs. In UCM-MSCs, not only expression levels of Oct3/4 and Nanog but also proliferation ability were significantly higher (P < 0.05) than in D-MSCs. In vitro differentiation abilities into adipocytes and osteocytes were confirmed for both MSCs. UCM-MSCs and D-MSCs were successfully trans-differentiated into corneal epithelial cells, and expression of lineage-specific markers (Cytokeratin-3, -8, and -12) were confirmed in both MSCs using immunofluorescence staining and qRT-PCR analysis. In particular, the differentiation capacity of UCM-MSCs into corneal epithelial cells was significantly higher (P < 0.05) than that of D-MSCs. In conclusion, UCM-MSCs have higher differentiation potential into corneal epithelial-like cells and have lower expression of CD119 and MHC class II than D-MSCs, which makes them a better source for the treatment of corneal opacity.
Pluripotent stem cells can be derived from both pre- and post-implantation embryos. Embryonic stem cells (ES cells), derived from inner cell mass (ICM) of blastocyst are naïve pluripotent and epiblast stem cells (EpiSCs) derived from post-implantation epiblast are primed pluripotent. The phenotypes and gene expression patterns of the two pluripotent stem cells are different each other and EpiSCs thought to be in a more advanced pluripotent (primed pluripotent state) than mouse ES cells (naïve pluripotent state). Therefore, we questioned whether EpiSCs are less potential to be differentiated into specialized cell types in vitro. EpiSCs were isolated from 5.5~6.5 day post coitum mouse embryos of the post-implantation epiblast. The EpiSCs could differentiate into all tree germ layers in vivo, and expressed pluripotency markers (Oct4, Nanog). Interestingly, EpiSCs also were able to efficiently differentiate into neural stem cells (NSCs). The NSCs differentiated from EpiSCs (EpiSC-NSCs) expressed NSC markers (Nestin, Sox2, and Musasi), self-renewed over passage 20, and could differentiate into two neural subtypes, neurons, astrocytes and oligodendrocytes. Next, we compared global gene expression patterns of EpiSC-NSCs with that of NSCs differentiated from ES cells and brain tissue. Gene expression pattern of brain tissue derived NSCs were closer to ES cell-derived NSCs than EpiSC-NSCs, indicating that the pluripotent stem cell-derived somatic cells could have different characteristics depending on the origin of pluripotent stem cell types. * This work was supported by the Next Generation Bio-Green 21 Program funded by the Rural Development Administration (Grant PJ 008009).
Some tissues retain extensive regeneration potential through out adult life and remain as active sites of cell production. Various cell types present in tissues are being produced through proliferation and progressive specialization from a pool of stem cells. In this regard, adult stem cells (ASCs) are multipotent progenitor cells with an ability to proliferate in vitro and undergo extensive self-renewal and differentiation into a wide range of cell types, including adipocytes, chondrocytes, osteocytes, myocytes, cardiomyocytes and neurons. In addition, recent studies showing the abilities of ASCs in generating oocytes-like cells (OLCs) present new perspectives to understand the specification and interaction during the germ cell formation and oogenesis. In the present study, ASCs were established from skin, adipose and ovarian tissues of minipigs. Isolated cells exhibited a fibroblast-like morphology with higher proliferation potential and stronger alkaline phosphatase (AP) activity. ASCs from all tissues expressed pluripotent transcriptional factors, such as Oct-3/4, Nanog and Sox-2 and phenotypic markers, including CD29, CD44, CD90 and vimentin. Further, ASCs were successfully dIfferentiated into osteocytes, adipocytes and neuron-like cells. Upon induction in oogenesis specific media, all ASCs were capable of differentiation into OLCs by exhibiting distinct morphological features. Generated OLCs expressed a range of germ cell specific markers, such as Vasa, deleted in Azoospermia-like (DAZL) factor, stella, c-kit, c-Mos, synaptonemal complex protein 3 (SCP-3), growth differentiation factor 9b (GDF- 9b), zona pellucida C (ZPC) and follicle stimulating hormone receptor (FSHR) at different time points of induction. Differentiated OLCs were also positive for the expression of Vasa and DAZL protein markers. Our findings showing that OLCs can be generated from ASCs of different tissue origin may offer pig as a suitable model for designing transgenic application strategies for reproductive tissue therapy. However, further studies are needed to understand the cellular and molecular mechanisms involved in germ cell differentiation from tissue specific stem cells.
Embryonic stem cells have a pluripotency and a potential to differentiate to all type of cells. In our previous study, we have shown that embryonic stem cells (ESCs) lines can be generated from murine parthenogenetic embryos. This parthenogenetic ESCs line can be a useful stem cell source for tissue repair and regeneration. The defect in full-term development of parthenogenetic ESCs line enables researchers to avoid the ethical concerns related with ESCs research. In this study, we presented the results demonstrating that parthenogenetic ESCs can be induced into osteogenic cells by supplementing culture media with ascorbic acid and β-glycerophosphate. These cells showed morphologies of osteogenic cells and it was proven by Von Kossa staining and Alizarin Red staining. Expression of marker genes for osteogenic cells (osteopontin, osteonectin, alkaline phosphatase, osteocalcin, bone-sialoprotein, collagen type1, and Cbfa1) also confirmed osteogenic potential of these cells. These results demonstrate that osteogenic cells can be generated from parthenogenetic ESCs in vitro.
In the present study, embryoid bodies (EBs) obtained from induced pluripotent stem cells (iPSCs) were induced to differentiate into germ lineage cells by treatment with bone morphogenetic protein 4 (BMP4) and retinoic acid (RA). The results were compared to the results for embryonic stem cells (ESCs) and multipotent spermatogonial stem cells (mSSCs) and quantified using immunocytochemical analysis of germ cell-specific markers (integrin-, GFR-, CD90/Thy1), fluorescence activating cell sorting (FACS), and real time-RT-PCR. We show that the highest levels of germ cell marker-expressing cells were obtained from groups treated with 10 ng/ BMP4 or 0.01 RA. In the BMP4-treated group, GFR- and CD90/Thy-1 were highly expressed in the EBs of iPSCs and ESCs compared to EBs of mSSCs. The expression of Nanog was much lower in iPSCs compared to ESCs and mSSCs. In the RA treated group, the level of GFR- and CD90/Thy-1 expression in the EBs of mSSCs Induced pluripotent stem cells, Mouse embryonic stem cells, Multipotent spermatogonial stem cells, Germ cell lineage, Differentiation potential. was much higher than the levels found in the EBs of iPSCs and similar to the levels found in the EBs of ESCs. FACS analysis using integrin-, GFR-, CD90/Thy1 and immunocytochemistry using GFR- antibody showed similar gene expression results. Therefore our results show that iPSC has the potential to differentiate into germ cells and suggest that a protocol optimizing germ cell induction from iPSC should be developed because of their potential usefulness in clinical applications requiring patient-specific cells.
배아 줄기세포는 세포 치료 목적을 위한 재료로써 매우 큰 잠재력을 가지고 있으며, 이러한 잠재력의 실현을 위해서 세포의 운명에 결정적인 역할을 하는 요소들을 확인하고 특정 세포의 대량 생산을 위한 방법을 개발하여야 한다. 조혈과정은 폭넓게 연구되어 왔으며, 배아 줄기세포로부터 조혈세포의 분화는 lineage commitment에 관한 연구에 좋은 모델이 된다. 본 연구에서는, 두 종류의 마우스 배아 줄기세포주 TC-1과 B6-1를 이용하여 그 특성과 조