Electroless plating is widely utilized in engineering for the metallization of insulator substrates, including polymers, glass, and ceramics, without the need for the application of external potential. Homogeneous nucleation of metals requires the presence of Sn-Pd catalysts, which significantly reduce the activation energy of deposition. Therefore, rinsing conducted during Sn sensitization and Pd activation is a key variable for the formation of a uniform seed layer without the lack or excess of catalysts. Herein, we report the optimized rinsing process for the functionalization of Sn-Pd catalysts, which enables the uniform FeCo metallization of the glass fibers. Rinsing enables good deposition of the FeCo alloy because of the removal of excess catalysts from the glass fiber. Concurrently, excessive rinsing results in a complete removal of the Sn–Pd nucleus. Collectively, the comprehensive study of the proposed nanomaterial preparation and surface science show that the metallization of insulators is a promising technology for electronics, solar cells, catalysts, and mechanical parts.
본 실험에서는 무전해 도금을 통하여 Pd 및 Pd-Cu 분리막을 제조하여 수소 투과 성능을 분석하였다. 분리막의 지 지체는 α-Al2O3 세라믹 중공사를 사용하였다. Pd-Cu 분리막은 무전해 도금을 실시하였고 Pd-Cu 합금을 만들기 위하여 수소 분위기에서 500°C, 18 h 동안의 열처리 과정을 거쳤다. 그 후, Pd-Cu 분리막은 EDS (Energy Dispersive X-ray Spectroscopy), XRD (X-ray Diffraction) 분석을 통해 합금이 형성된 것을 확인하였다. Pd 및 Pd-Cu 도금층의 두께는 SEM (Scanning Electron Microscope) 분석을 통해 각각 약 3.21, 3.72 μm으로 측정되었다. 수소 투과 성능은 수소 단일 가스, 혼합가스(H2, N2)에서 350~450°C, 1~4 bar의 범위에서 수소 투과 실험을 진행하였다. 수소 단일 가스에서 Pd 및 Pd-Cu 분리막은 450°C, 4 bar에서 최대 54.42, 67.17 ml/cm2⋅min의 flux를 가지며, 혼합가스에서는 450°C, 4 bar의 조건일 때, 각각 1308, 453의 separation factor가 나오는 것을 확인하였다.
The overall process, from the pre-treatment of aluminum substrates to the eco-friendly neutral electroless Ni-P plating process, was observed, compared, and analysed. To remove the surface oxide layer on the aluminum substrate and aid Ni-P plating, a zincation process was carried out. After the second zincation treatment, it was confirmed that a mostly uniform Zn layer was formed and the surface oxide of aluminum was also removed. The Ni-P electroless plating films were formed on the secondary zincated aluminum substrate using electroless plating solutions of pH 4.5 and neutral pH 7.0, respectively, while changing the plating bath temperature. When a neutral pH7.0 electroless solution was used, the Ni-P plating layer was uniformly formed even at the plating bath temperature of 50 oC, and the plating speed was remarkably increased as the bath temperature was increased. On the other hand, when a pH 4.5 Ni-P electroless solution was used, a Ni-P plating film was not formed at a plating bath temperature of 50 oC, and the plating speed was very slow compared to pH 7.0, although plating speed increased with increasing bath temperature. In the P contents, the P concentration of the neutral pH 7.0 Ni-P electroless plating layer was reduced by ~ 42.3 % compared to pH 4.5. Structurally, all of the Ni-P electroless plating layers formed in the pH 4.5 solution and the neutral (pH 7.0) solution had an amorphous crystal structure, as a Ni-P compound, regardless of the plating bath temperature.
Activated carbon fibers (ACFs) were treated by electroless plating of CuO to improve their removal performance for volatile organic compounds (VOCs). The properties of these samples(CuO@ACFs) were evaluated by X-ray photoelectron spectroscopy (XPS), BET and N2O chemisorption to determine the area and dispersion of metallic CuO. The removal efficiency for benzene was investigated by gas chromatography (GC). The breakthrough time of CuO@ACFs increased by approximately 120% compared to that of untreated ACFs at benzene of 100 ppm. CuO@ACFs removed 100% of the benzene in 20 h, indicating this material can be used as a removal technology for VOCs.
Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m−1K−1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10−6 to 3.06 × 10−6 K−1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.
본 연구에서는 무전해도금법을 이용한 Pd coating 기술을 활용하여 폐수처리를 위한 전기분해 공정에 anode로의 적용을 목적으로 Ti-mesh 기반 전극을 제조하였다. 제조된 Pd/Ti-mesh 전극은 염색염료인 RO16을 대표로 그 제거성능을 평가하였으며, 전극 제조조건을 다르게 하여 내구성 및 성능을 극대화한 결과 coating 조건은 성능에 크게 영향을 미치지 않았지만, Pd coating 후 열처리 공정의 경우 성능에 크게 영향을 미쳤으며, 내구성 역시 증진됨을 확인하였다. 또한 Ir, Ru, Ta을 복합화하여 성능 및 내구성을 극대화하고자 하였으나, coating법의 한계로 layer의 thickness가 증가함에 따라 저항이 커졌으며, 이에 따라 성능이 감소함을 확인하였다.
수소는 반도체, 수소화 반응, 연료전지 등 다양한 산업 공정에 사용될 뿐만 아니라 높은 에너지 밀도를 가져 미래의 에너지 원으로 각광 받는다. Water Gas Shift(WGS)와 같은 일반적인 수소제조 공정에서 수소 뿐만 아니라 일산화탄소, 이산화탄소 메탄과 같은 불순물들이 포함되며, 농축 및 정제의 필요성이 있다.
Pd 수소분리막을 이용한 수소 분리공정은 수소만을 선택적으로 분리하여 99% 이상의 순도를 쉽게 얻을 수 있다. 본 연구에서는 상전이법을 통하여 중공사형 알루미나 지지체를 제조하고, 무전해 도금법을 이용하여 Pd를 코팅하였다. 무전해 도금법을 이용하여 제조한 분리막을 SEM, EDS, XRD 등의 분석을 통하여 특성을 파악하였으며, 온도 및 압력에 따른 수소 분리실험을 진행 하였다.
본 연구는 “교육부 기본연구(NRF-2017R1D1A1B03036250)”의 지원으로 수행되었습니다.
수소원자는 금속 표면에 흡착하여 해리되고 금속 격자 사이를 이동해 다시 수소분자로 재결합되어 탈착할 수 있으며 이러한 과정으로 수소는 금속을 통해 투과할 수 있다. 특히 수소원자는 팔라듐에서 높은 용해도와 이동도를 보이기 때문에 우수한 수소 투과 특성을 나타낸다. 본 연구에서는 무전해 도금을 이용하여 Pd 금속을 α-Al2O3 중공사 지지체에 증착시켜 SEM&EDS 분석을 통해 Pd 코팅 특성을 확인하였다. 치밀 Pd 층을 확인하기 위한 분리막의 leak 테스트 후 고온 수소투과 실험을 통해 분리막의 수소투과특성을 확인하였다. 본 연구는 “교육부 기본연구(NRF-2017R1D1A1B03036250)”의 지원으로 수행되었습니다.
SiHCl3를 제조하는 공정에서 배출되는 클로로실란 혼합가스 중 수소의 재이용을 위하여 분리공정이 필수적이며, Pd계 분리막이 사용될 수 있다. 일반적인 Pd분리막의 경우 300°C 이하에서 수소 흡착에 의한 취성문제와 공존하는 불순물가스에 의한 손상문제가 있을 수 있다. 따라서 본 연구에서는 이를 해결하고자 Pd layer 위에 Ru을 무전해 도금하여 Pd/Ru 복합 분리막을 제조하였고 저온에서 수소 투과도 및 안정성을 평가한 결과 180°C에서 50일 동안 수소에 의한 취성이 발생하지 않았으며 1.8 m3m-2h-1의 안정적인 투과량을 나타내었고. 또한 5% HCl, 0.5% SiHCl3가 포함된 가스를 225°C의 온도에서 2 bar로 주입하였을 때 9 hr 동안 Pd/Ru 복합 분리막이 손상되지 않고 수소의 투과량이 2.0 m3m-2h-1 이상으로 유지됨을 확인하였다.
수소원자는 금속 표면에 흡착하여 해리되고 금속격자 사이를 이동해 다시 수소분자로 재결합되어 탈착할 수 있으며 이러한 과정으로 수소는 금속을 통해 투과할 수 있다. 특히 수소원자는 팔라듐에서 높은 용해도와 이동도를 보여 우수한 수소투과 특성을 나타낸다. 본 연구에서는 무전해 도금을 이용하여 Pd계 금속을 α-Al2O3 중공사막 지지 체에 증착시켜 수소투과 실험을 진행하였다. Pd을 증착하기 전, Seeding 과정을 통해 지지체에 Pd 핵을 심어 금속의 증착이 용이하도록 하였으며, 중공사막 지지체의 표면 특성에 따른 Pd 증착상태를 확인하였다.
For enhanced cavitation erosion resistance of vessel propellers, an electroless Ni-P plating method was introduced to form a coating layer with high hardness on the surface of Cu alloy (CAC703C) used as vessel propeller material. An electroless Ni-P plating reaction generated by Fe atoms in the Cu alloy occurred, forming a uniform amorphous layer with P content of ~10 wt%. The amorphous layer transformed to (Ni3P+Ni) two phase structure after heat treatment. Cavitation erosion tests following the ASTM G-32 standard were carried out to relate the microstructural changes by heat treatment and the cavitation erosion resistance in distilled water and 3.5 wt% NaCl solutions. It was possible to obtain excellent cavitation erosion resistance through careful microstructural control of the coating layer, demonstrating that this electroless Ni-P plating process is a viable coating process for the enhancement of the cavitation erosion resistance of vessel propellers.
We used an etching process to control the line-width of screen printed Ag paste patterns. Ag paste was printed on anodized Al substrate to produce a high power LED. In general, Ag paste spreads or diffuses on anodized Al substrate in the process of screen printing; therefore, the line-width of the printed Ag paste pattern increases in contrast with the ideal line-width of the pattern. Smudges of Ag paste on anodized Al substrate were removed by neutral etching process without surface damage of the anodized Al substrate. Accordingly, the line-width of the printed Ag paste pattern was controlled as close as possible to the ideal line-width. When the etched Ag paste pattern was used as a seed layer for electroless Ni plating, the line width of the plated Ni film was similar to the line-width of the etched Ag paste pattern. Finally, in pattern formation by Ag paste screen printing, we found that the accuracy of the line-width of the pattern can be effectively improved by using an etching process before electroless Ni plating.
Cu circuits were successfully fabricated on flexible PET(polyethylene terephthalate) substrates using wettability difference and electroless plating without an etching process. The wettability of Cu plating solution on PET was controlled by oxygen plasma treatment and SiOx-DLC(silicon oxide containing diamond like carbon) coating by HMDSO(hexamethyldisiloxane) plasma. With an increase of the height of the nanostructures on the PET surface with the oxygen plasma treatment time, the wettability difference between the hydrophilicity and hydrophobicity increased, which allowed the etchless formation of a Cu pattern with high peel strength by selective Cu plating. When the height of the nanostructure was more than 1400 nm (60 min oxygen plasma treatment), the reduction of the critical impalement pressure with the decreasing density of the nanostructure caused the precipitation of copper in the hydrophobic region.
The monolayer engineering diamond particles are aligned on the oxygen free Cu plates with electroless Ni plating layer. The mean diamond particle sizes of 15, 23 and 50 μm are used as thermal conductivity pathway for fabricating metal/carbon multi-layer composite material systems. Interconnected void structure of irregular shaped diamond particles allow dense electroless Ni plating layer on Cu plate and fixing them with 37-43% Ni thickness of their mean diameter. The thermal conductivity decrease with increasing measurement temperature up to 150oC in all diamond size conditions. When the diamond particle size is increased from 15 μm to 50 μm (Max. 304 W/mK at room temperature) tended to increase thermal conductivity, because the volume fraction of diamond is increased inside plating layer.
We investigated the effects of DMAB (Borane dimethylamine complex, C2H10BN) in electroless Ni-B film with addition of DMAB as reducing agent for electroless Ni plating. The electroless Ni-B films were formed by electroless plating of near neutral pH (pH 6.5 and pH 7) at 50˚C. The electroless plated Ni-B films were coated on screen printed Ag pattern/PET (polyethylene terephthalate). According to the increase of DMAB (from 0 to 1 mole), the deposition rate and the grain size of electroless Ni-B film increased and the boron (B) content also increased. In crystallinity of electroless Ni-B films, an amorphization reaction was enhanced in the formation of Ni-B film with an increasing content of DMAB; the Ni-B film with< 1 B at.% had a weak fcc structure with a nano crystalline size, and the Ni-B films with > 5 B at.% had an amorphous structure. In addition, the Ni-B film was selectively grown on the printed Ag paste layer without damage to the PET surface. From this result, we concluded that formation of electroless Ni-B film is possible by a neutral process (~green process) at a low temperature of 50˚C.