구조물에 작용하는 바람하중을 정량적으로 예측하는 것을 거의 불가능하다. 그러나 그 하중이 백색잡음으로부터 재생될 수 있다는 가정은 동적해석을 위한 수치시뮬레이션에 매우 유용할 뿐만 아니라 역해석과정에서 바람하중에 대한 유일 해를 추정할 수 있 는 가능성을 높일 수 있는 추가적인 구속조건을 제공한다는 측면에서 매우 유리하다. 그러한 가정에 의하여, 구조물 응답에 영향을 미 치는 동적특성과 하중특성(하중모델)을 차례로 제거하고 나면 순수한 백색잡음만 남게 되므로 이러한 백색화과정을 통하여 구조물의 동적 특성과 하중특성을 동시에 추정할 수 있는 방안을 모색할 수 있을 것이다. 본 연구에서는 스펙트럼 백색화과정을 통하여 구조물 의 모달 파라미터와 모달하중(하중모델을 구성하는 파라미터)을 동시에 추정하는 새로운 역해석 기법을 제안한다. 백색화과정을 모달 응답에 적용하여 모달 파라미터과 하중모델 파라미터를 구하는 과정을 유도하였으며, 제안된 동시 추정기법을 단자유도 모형, 공탄성 모델에 대한 풍동실험에 적용하여 모달파라미터 특히 감쇠비추정의 신뢰성을 검증하였으며, 그 결과 신뢰도가 높은 모달 파라미터, 하 중모델 파라미터 추정이 가능함을 알 수 있었다.
건축 토목 구조물에 작용하는 하중은 알 수 없는 경우가 대부분이므로 구조물에 대한 시스템 식별 알고리듬은 외부하중을 백 색잡음으로 가정한다. 이러한 가정은 일면 타당성이 있으나 와류하중과 같이 스펙트럼이 특정한 형태를 가지고 있는 경우 모달 파라 미터 특히 감쇠비 추정의 불확실성의 원인이 되고 있다. 본 연구에서는 구조물의 응답으로부터 역 계산된 하중을 이용하여 하중모델 을 구축하고 이를 이용하여 감쇠비를 추정하는 새로운 기법을 제안한다. 본 제안 기법은 외부하중을 백색잡음으로 가정하는 기존 VDS 기법을 기반으로 외부하중 스펙트럼 모델을 고려할 수 있는 보다 일반화된 기법이다. 제안된 추정기법을 직사각형단면 공탄성모델에 대한 공기력진동실험으로 수행하여 구한 가속도 응답에 적용하여 감쇠비추정의 신뢰성을 검증하였다. 풍속에 따라 풍하중 모델을 구 축하고 와류공진, 와류공진 전 후의 공력감쇠비를 평가한 결과 안정적이며, 신뢰도가 높은 감쇠비 추정이 가능함을 알 수 있었다.
Mathematically modeling photosynthesis helps to interpret gas exchange in a plant and estimate the photosynthetic rate as affected by environmental factors. Notably, the photosynthetic rate varies among leaf vertical positions within a single plant. The objective of this study was to measure the distinct photosynthetic rate of lily (Lilium Oriental Hybrid ‘Casa Blanca’) at the upper, medium, and basal leaf positions. Subsequently, the FvCB (Farquhar-von Caemmerer-Berry) photosynthesis model was employed to determine the parameters of the model and compared it with a rectangular hyperbola photosynthesis model. The photosynthetic rates were measured at different intracellular CO2 concentrations () and photosynthetic photon flux density (PPFD) levels. SPAD values significantly decreased with lowered leaf position. The photosynthetic rates at the medium and basal leaves were lower compared with the upper leaves. FvCB model parameters, and , showed no significant difference between the medium and basal leaves. Estimated photosynthetic rates from derived parameters by the FvCB model demonstrated over 0.86 of R2 compared with measured data. The rectangular hyperbola model tended to overestimate or underestimate photosynthetic rates at high with high PPFD levels or low with high PPFD levels, respectively, at each leaf position. These results indicated that the parameters of the FvCB model with different leaf positions can be used to estimate the photosynthetic rate of lily.
본 논문에서는 시간 의존적 거동을 고려하기 위한 크리프 거동 해석과 비탄성 해석법을 통해 기존의 설계기준 보다 정확하고 전 시 간 단계에서의 CFT 기둥의 해석을 가능하게 하는 수치 해석 모델을 제안하고, 기존의 CFT 기둥에 수행된 실험 결과와 비교하였다. 그 결과 본 논문에서 제안된 수치 해석 모델의 결과가 기존의 설계 기준의 결과보다 정확한 추세를 나타낸다는 것을 파악 할 수 있었다. 검증 이후 세장비에 따른 수치 해석을 수행하여 전반적인 CFT 기둥 부재의 단기 및 장기 지속 하중 거동에 대한 극한 하중의 정도를 확인하였다.
PURPOSES : In this study, an empirical approach was established to estimate the parameters of the resilient modulus based on various geotechnical properties of subgrade soils. METHODS : Multiple regression analyses were performed to analyze the relationship between resilient modulus (k1) and deformation. The most important factors are the #200 sieve passing ratio, moisture content, and dry unit weight of the soil. The applicability of this approach was verified using selected field data and the literature. RESULTS : The correlation between the results predicted using the prediction equation of the model constant (k1) and the actual k1-value was high. The applicability of the prediction equation was considered high owing to its high suitability with the existing data. The range of values obtained using the constant prediction equation of the proposed model was also judged to be reasonable. In the comparison of the CBR value of the subgrade material of the actual design section and the predicted elastic modulus (k1), almost no relationship was observed between the CBR and the model coefficient (k1). Thus, the estimation of the elastic modulus through CBR is likely to contain errors. CONCLUSIONS : Based on these results, the parameters of the universal model can be predicted using the stress-dependent modulus model proposed in this study.
4차 산업혁명의 도래로 인한 기술혁신은 자율운항선박을 중심으로 해상 운송분야까지 활발한 발전을 불러왔다. 특히, 현재의 선원이 직접 운항하는 방식인 유인선박 사이에서 운항하게 될 자율운항선박은 자율도에 따라 원격제어를 통해 운항을 수행하며, 육상에 서 이를 제어할 원격운항자에 대한 관심 또한 늘어나고 있다. 하지만 아직 원격운항자가 개입이 필요한 상황이 동시에 발생하는 등을 고 려한 원격운항자 최소 인력 요구사항에 대한 연구는 부족한 상황이다. 본 연구는 특정 해역 구간의 누적된 항적데이터를 활용하여 선박 간에 발생할 수 있는 조우상황에서 원격운항자의 개입이 필요한 상황을 정의하고, 해당 구간을 특정 규모의 자율운항선박 선대로 운항하 였을 때, 원격운항자의 개입이 동시에 필요한 상황이 얼마나 발생하는지를 시뮬레이션을 통해 확인하였다. 연구의 결과는 향후 실제 자율 운항선박 선대를 운행할 원격운항센터의 원격운항자의 적정인력 배치 등의 계획 또는 정책 수립에 활용될 기초 자료로 활용될 것으로 기 대한다.
In this study, we analyzed how the revenue water ratio(RWR) is affected by changes in conditions of the water supply area, such as the ratio of aging pipes, maintenance conditions, and revenue water. As a result of analyzing the impact of pipe aging and maintenance conditions on the RWR, it was confirmed that the RWR could be decreased if the pipe replacement project to improve the aging pipe ratio was not carried out and proper maintenance costs were not secured. It was also confirmed that an increase in the revenue water could be operated to facilitate the achievement of the project’s target RWR. In contrast, a decrease in the revenue water due to a population reduction could affect the failure of the target RWR. In addition to analyzing the causes of variation in the RWR, the calculation of estimated project costs was considered by using leakage reduction instead of RWR from recent RWR improvement project cost data. From this analysis, it was reviewed whether the project costs planned to achieve the target RWR of the RWR improvement project in A city were appropriate. In conclusion, the RWR could be affected by variations in the ratio of aging pipes, maintenance conditions, and revenue water, and it was reasonable to consider not only the construction input but also the input related to RWR improvement, such as leakage reduction, when calculating the project cost.
본 논문에서는 기저 스크리닝 기반 크리깅 모델(BSKM: Basis Screening based Kriging Model) 생성의 정확도를 높이기 위해 페널티 를 적용한 최대 우도 평가 방법(PMLE : Penalized Maximum Likelihood Estimation)에 대해서 소개한다. BSKM에서 사용하는 기저함 수의 최대 차수와 종류는 그 중요도에 따라서 결정하게 되며, 이때 중요도의 지표는 기저함수에 대한 교차 검증 오차(CVE : Cross Validation Error)로 택한다. 크리깅 모델(KM : Kriging Model) 구성시 최적의 기저함수 조합은 우선 최대 기저함수 차수를 선택하고 개별 기저함수의 중요도를 평가를 하게 된다. 최적 기저함수 조합은 크리깅 모델의 CVE가 최소가 될 때까지 개별 기저함수의 중요도 가 높은 순으로 기저함수를 하나씩 추가하며 찾는다. 이 과정에서 KM은 반복적으로 생성해야 하며, 동시에 데이터 사이의 상관관계 를 나타내는 하이퍼 매개변수(Hyper-parameters)도 최대 우도 평가방법을 통해 계산하여야 한다. 하이퍼 매개변수의 값에 따라 선택 되는 최적의 기저함수 조합이 달라지기 때문에 KM의 정확도에 막대한 영향을 미치게 된다. 정확한 하이퍼 매개변수를 계산하기 위해 서 PMLE 방법을 적용하였으며, Branin-Hoo 함수 문제에 적용하여 BSKM 의 정확성이 개선될 수 있음을 확인하였다.
of hazardous risk factors, risk estimation and determination steps by reflecting the trend of overseas risk assessment. METHODS : In deriving, estimating and determining risk factors, comparing the procedures presented by the ILO with the domestic guidline to find out the differences in procedural. and, According to the domestic manual, after setting the criteria for determining a deterministic perspective, analyze the risk assessment data of a specific domestic company and three overseas risk assessment research data to analyze the differences in methodology domestic and abroad. RESULTS : Within the country, there is a possibility that a deterministic view may be applied to all stages of procedure, and certain corporate data to the risk estimation and determination stage. In the case of overseas, the trend of applying deterministic perspectives to the risk determination stage was confirmed. CONCLUSIONS : Present the need for a standard model for improving deterministic methods in the other two stages, excluding risk determination in the domestic evaluation procedure.
PURPOSES : Construction cost estimates are important information for business feasibility analysis in the planning stage of road construction projects. The quality of current construction cost estimates are highly dependent on the expert's personal experience and skills to estimate the arithmetic average construction cost based on past cases, which makes construction cost estimates subjective and unreliable. An objective approach in construction cost estimation shall be developed with the use of machine learning. In this study, past cases of road projects were analyzed and a machine learning model was developed to produce a more accurate and time-efficient construction cost estimate in teh planning stage. METHODS : After conducting case analysis of 100 road construction, a database was constructed including the road construction's details, drawings, and completion reports. To improve the construction cost estimation, Mallow's Cp. BIC, Adjusted R methodology was applied to find the optimal variables. Consequently, a plannigs-stage road construction cost estimation model was developed by applying multiple regression analysis, regression tree, case-based inference model, and artificial neural network (ANN, DNN). RESULTS : The construction cost estimation model showed excellent prediction performance despite an insufficient amount of learning data. Ten cases were randomly selected from the data base and each developed machine learning model was applied to the selected cases to calculate for the error rate, which should be less than 30% to be considered as acceptable according to American Estimating Association. As a result of the analysis, the error rates of all developed machine learning models were found to be acceptable with values rangine from 17.3% to 26.0%. Among the developed models, the ANN model yielded the least error rate. CONCLUSIONS : The results of this study can help raise awareness of the importance of building a systematic database in the construction industry, which is disadvantageous in machine learning and artificial intelligence development. In addition, it is believed that it can provide basic data for research to determine the feasibility of construction projects that require a large budget, such as road projects.
With rapid urbanization, the importance of urban warfare is increasing, and it is also required to reflect the characteristics of cities in wargame models. However, in the military's wargame models, the urbanization factor was calculated and used without theoretical basis. In this study, we investigate techniques for estimating the urbanization factor using Fractal dimension theory. The urbanization factor we propose can suggest a logical and valid representative value when used in conjunction with Agent Based Model and other methodologies.
The objective of this study is to estimate the dietary exposure of polychlorinated dibenzo-p-dioxins and dibezofurans (PCDD/Fs) of Korean population via milk and meat using a probabilistic exposure assessment model. Total 319 raw milk and meat samples collected in the period 2006-2008 from nationwide Korea were measured the concentrations of 17 PCDD/Fs. Distributions of dietary exposure of 7 age subgroups to PCDD/Fs from the commodities were estimated probabilistically using Monte Carlo simulations. Dietary exposure groups were divided as lower, medium and high consumer subgroups according to the consumption of each commodity. The amounts of dietary exposures of Korean population subgroups were compared to the provisional maximum tolerable monthly intake (PTMI) recommended by the Joint FAO/WHO Expert Committee on Food Additives and Contaminants (JECFA). The mean PCDD/Fs concentrations in raw milk and meat of beef, prok and chicken were measured as 0.501, and 0.022~0.150pg WHO-TEQ/g, respectively. Dietary exposure of children was significantly higher than that of adults due to their high milk consumption per body weight (BW). Dietary intake of PCDD/Fs of the Korean populations estimated ranged from 0.154 to 1.248 pg WHO- TEQ/kg BW/day for high consumers (the 97.5th percentile) at the upper bound. Dietary intakes of average population of various subgroups were below the half of PTMI, but those of higher consumers were found exceeding or comparable to PTMI at the upper bound level. This study also suggests that the estimated PCDD/Fs concentrations in milk and meat are comparable to those reported in previous studies. Probabilistic assessment model for PCDD/Fs exposure in meat and milk commodities could be used to estimate the exposure of PCDD/Fs in Korean population for the development of risk mangement mesaures for PCDD/Fs in meat and milk.
Welding is one of representative manufacturing processes in the industrial field. Cryogenic storage containers are also manufactured through welding, and conversion to laser welding is issue in the field due to many advantages. Since welding causes thermal-elastic deformation, design considering distortion is required. Prediction of distortion through FEM is essential, but laser welding has difficulties in the field because there is no representative heat source model. The author presented the model that can cover various models using a multi-layer heat source model in previous studies. However the previous study has a limitation which is a welding heat source model must be derived after performing bead on plate welding. Thus this study was attempted to estimate the welding heat source parameters by comparing the shape of bead under various conditions. First, the difference between penetration shape and welding heat source parameters according to welding power was analyzed. The radius of the welding heat source increased according to the welding power, and the depth of the welding heat source also increased. The correlation between the penetration shape and the welding heat source parameter appears at a similar rate, however the follow-up research is necessary with more model data.