In apartment buildings in Korea, irregular walls, such as T-, L-, and U-shaped walls, are commonly used. However, in practical design, the geometric irregularities of walls are often neglected when determining the length of the lateral confinement region. Further, although earthquake loads apply from various directions, the lateral confinement region is typically determined for the in-plane direction of the web. Thus, using finite element analysis, this study investigated the structural performance of irregular walls subjected to various loading directions. As the design parameters, wall shape, cross-sectional aspect ratio, and loading direction were addressed. According to the parametric analysis results, as the length of flange in tension increased, the lateral confinement region should be evaluated with consideration of the geometric irregularity. Further, for the L- and U-shaped walls, it is recommended to evaluate the lateral confinement region for various loading directions. Based on these results, a design method to determine the lateral confinement region of irregular walls was suggested.
철근 콘크리트는 주요 건축 자재로서 다양한 구조 시스템에 널리 사용됩니다. 하지만 시간이 지남에 따라 동결-해동 주기, 철근 부식 등의 요인으로 인해 내구성이 저하되는 경우가 많습니다. 최근 탄소섬유강화폴리머(CFRP)는 강철보다 높은 중량 대비 강도, 동결융해 손상 저항성, 부식 저항성 등의 장점으로 인해 큰 주목을 받고 있습니다. 이러한 장점에도 불구하고 국내외 연구를 검토한 결과, CFRP 그리드에 대한 실험 연구가 부족하여 실험을 통한 CFRP 그리드 포장 공법 검증의 필요성이 강조되고 있습니다. 이 연구는 알칼리 노출에 따른 CFRP 그리드 포장 공법의 동결-해동 저항성과 강도 저하를 평가하는 것을 목표로 했습니다. 연구 결과, 인발 공법으로 제조된 CFRP 그리드는 RTM 공법으로 제조된 그리드에 비해 동결-해동사이클 후 강도가 10% 감소하고 알칼리 노출 시 최대 32.8%의 강도 감소가 발생하는 것으로 나타났습니다.
목적 : 디지털 시기능 훈련용 게이밍 프로그램을 사용하여 대상자의 시기능 훈련 후 양안시기능의 변화를 조사 하였다. 방법 : 본 연구는 전신질환, 안과적 질환, 과거 수술력이 없고 사시 진단을 받지 않은 신체 건강한 성인 25명(남 자 14명, 여자 11명)을 대상으로 하였다. 언리얼 엔진을 기반으로 한 게이밍 프로그램은 시기능을 강화 및 훈련하 기 위한 목적으로 개발되었다. 모든 피검자에게 디지털 시기능 훈련용 프로그램을 한달 동안 일주일 2회, 30분간 시행하여 훈련을 진행하였다. 결과 : 디지털 시기능 훈련 전과 후의 조절근점은 13.08±2.26 cm에서 10.15±3.41 cm으로 향상되었다. 조절 용이성은 12.05±1.20회에서 9.78±1.32회로 개선되어 선명하게 초점을 맺는데 시간이 단축되었다(p<0.050). 버 전스용이성(Vergence facillity)은 12.89±2.34 회에서 9.14±1.75 회로 통계적으로 유의하게 향상되었다(p< 0.050). 외사위도는 –2.48±2.56 Δ(exo.)에서 -1.07±1.23 Δ(exo.)으로 외사위량이 통계학적으로 유의하게 감소 하였고(p<0.050) 양성융합버전스 분리점은 21.99±4.26 Δ에서 24.55±2.89 Δ으로 개선되었고 음성융합버전스 분리점은 평균 17.57±2.12 Δ에서 18.69±1.60 Δ으로 약 0.1 Δ이 소폭 증가하였다. 결론 : 디지털 시기능 훈련으로 연구 대상자들의 외사위도가 감소하였고 조절력, 조절 및 버전스 용이성과 안구 운동성 능력이 개선되는 것을 알 수 있었다. 디지털 시기능 훈련은 안구 운동성 기능과 양안시기능이 중요한 직군 의 사람들에게 도움을 줄 수 있고 다양하게 활용될 수 있는 활용가치 및 잠재력을 가지고 있다.
Recently, high-rise residential buildings in Korea have adopted slender shear walls with irregular section shapes, such as T-shape, H-shape, and C-shape. In the seismic design of the slender shear walls, the transverse reinforcement for lateral confinement should be provided in the boundary elements to increase deformation capacity and subsequent ductility. However, in practice, the irregularity of the shear walls is not adequately considered, and the lateral confinement region is calculated for the rectangular wall segments. This study investigated the proper design method for lateral confinement regions using finite element analysis. The lateral confinement region was considered in analysis for two cases: 1) as a typical rectangular wall segment and 2) as an irregular wall. When the irregularity of the walls was considered, the compression zone depth was increased because the vertical reinforcement in the flange was addressed. The effect of lateral confinement design methods on the structural performance of the walls was directly compared under various design parameters, including the length of the flange, concrete compressive strength, vertical rebar layout, axial load ratio, and loading direction. According to the results of the parametric analysis, the peak strength and deformation capacity could be significantly increased when the lateral confinement region was calculated based on irregularly shaped walls, regardless of the design parameters. In addition, the effective compression zone was located within the lateral confinement region. Thus, it is recommended that the lateral confinement region of T-shaped walls is calculated by addressing the irregularity of the walls.
본 연구에서는 주민 체감형 수요자 중심의 녹지를 체감녹지(Public perception green spaces)로 정의하고 보다 실질적 으로 서비스권역 내 인구와 거주지에서 녹지까지의 접근성을 분석하였다. 이를 위하여 체감녹지를 산림녹지, 공원녹지, 시설녹지로 분류·선정하고, 통계 데이터의 최소기준인 집계구 단위를 조사구로 하여 QGIS를 사용하여 네트워크 분석 (Network Analysis)을 하였다. QGIS QNEAT3 알고리즘을 이용하여 체감녹지와 집계구 간 서비스권역 및 접근성 분석을 부산광역시 16개 구·군에 적용한 결과, 체감녹지로부터 도보 10분 내 서비스권역 인구비는 북구, 수영구, 기장군, 동래구 순서로 높은 비율을 나타냈고, 접근성 분석에서도 유사한 결과가 도출되었다. 본 연구는 기존의 녹지불평등 평가 방법을 보완하여 주민 체감형 수요자 중심의 녹지 현황을 파악하고, 향후 보다 적절한 곳에 공원과 녹지를 배치하 여 도시민의 녹지 이용 만족도를 높여줄 것으로 기대한다.
이 연구의 목적은 국내 대학의 유학생을 위한 한국어 관련 교과목의 강의 평가에서 평가 방법이 중국인 유학생의 평가 태도에 미치는 영향을 조사함으로써 평가의 문제점을 파악하고 이를 바탕으로 중국인 유학생 대상의 강의 평가 개선 방안을 제공하는 것이다. 이를 위해 현재 국내 대학에서 유학 중인 중국인 유학생을 대상으로 지면 설문조사를 실시한 후 그중 일부를 무작위 선정하여 면대면 개별 인터뷰를 진행하였다. 연 구 결과, 조사 방법에 따라 학습자의 강의평가 태도에 차이가 상당함을 확인하였다. 설문조사보다 인터뷰 방식으로 수집된 응답이 더 다양하고 구체적이며 응답 적극성도 높은 편이다. 향후 타당도 높은 강의 평가를 실시하기 위해서 학습자의 강의 평가에 대한 인식 개선, 강의 평가 능력 함양, 강의 평가의 실시 방식 다양화 등을 고려해야 할 것이다.
PURPOSES : As evaluation methods for road paving materials become increasingly complex, there is a need for a method that combines computational science and informatics for new material development. This study aimed to develop a rational methodology for applying molecular dynamics and AI-based material development techniques to the development of additives for asphalt mixtures. METHODS : This study reviewed relevant literature to analyze various molecular models, evaluation methods, and metrics for asphalt binders. It examined the molecular structures and conditions required for calculations using molecular dynamics and evaluated methods for assessing the interactions between additives and asphalt binders, as well as properties such as the density, viscosity, and glass transition temperature. Key evaluation indicators included the concept and application of interaction energy, work of adhesion, cohesive energy density, solubility parameters, radial distribution function, energy barriers, elastic modulus, viscosity, and stress-strain curves. RESULTS : The study identified key factors and conditions for effectively evaluating the physical properties of asphalt binders and additives. It proposed selective application methods and ranges for the layer structure, temperature conditions, and evaluation metrics, considering the actual conditions in which asphalt binders were used. Additional elements and conditions considered in the literature may be further explored, considering the computational demands. CONCLUSIONS : This study devised a methodology for evaluating the physical properties of asphalt binders considering temperature and aging. It reviewed and selected useful indicators for assessing the interaction between asphalt binders, additives, and modified asphalt binders and aggregates under various environmental conditions. By applying the proposed methods and linking the results with informatics, the interaction between asphalt binders and additives could be efficiently evaluated, serving as a reliable method for new material development.
This study evaluates the analytical performance of a newly developed miniaturized disposable U-tube for an automated blood viscometer and compares it to conventional viscometers. Whole blood viscosity (WBV), essential for circulatory function, exhibits non-Newtonian behavior, posing challenges for measurement at low shear rates. The blood viscometer, based on a scanning capillary tube method, used disposable U-tubes to measure viscosities across a shear rate range of 1s⁻¹ to 1,000s⁻¹. Precision evaluation showed stable coefficients of variation (CV) across different viscosity levels. Repeatability assessment indicated consistent CV values, demonstrating the reliability of the device. The agreement with the LV-III Brookfield viscometer and MCR 92 Rheometer was analyzed using Bland-Altman plots, which revealed minor systematic biases and consistent differences across the measurement range. Correlation analysis using Passing-Bablok regression showed high correlation coefficients (R > 0.96) with regression slopes close to 1. The newly developed miniaturized disposable U-tube exhibits excellent precision, reliable repeatability, and high correlation with established methods, enhancing laboratory productivity and offering potential for clinical applications. Further studies with human blood samples are recommended to confirm its clinical applicability.
Abstract Purpose : The purpose of this study is to evaluate the differences and reliability of various methods for measuring Interpupillary Distance. Methods : The participants were 50 Cambodian adults (28.08±3.85 years old) without ocular disease and abnormal binocular vision. Far/near IPD was measured using Corneal reflection pupillometer, PD ruller and spotting, and calculated formula for fixation distance. Using each method, the pupil distance of both eyes was measured three times, respectively, and the average value was recorded. Results : The average value of the corneal reflection pupilometer in the distance was 63.08±3.42 mm, the average value of PD calculated formula was 62.97±3.41 mm, the average value of the PD ruler was 63.72±3.17 mm, and the average value of the spotting method was 63.89±3.15 mm. The average value of the corneal reflection pupilometer in the near was 59.85±3.23 mm, the average value of the calculated formula for fixation distance was 59.95±3.23 mm, the average value of PD ruler was 59.72±3.29 mm, and the average value spotting method was 59.47±3.23 mm. Comparison between various methods in the distance and near showed statistically significant differences (p<0.001). Conclusion : In the comparative analysis between each method, the corneal reflection pupillometer is considered to be the most accurate method, but since there is no significant difference from the average value of the Spotting method, the PD Ruler Viktorin method, and the calculated formula for fixation distance, whichever method is used, it is clinically acceptable. Therefore it is believed that each method is compatible with each other. Key words : Corneal reflection pupillometer, PD meter, PD ruler, Spotting
In this study, Ni-Y2O3 powder was prepared by alloying recomposition oxidation sintering (AROS), solution combustion synthesis (SCS), and conventional mechanical alloying (MA). The microstructure and mechanical properties of the alloys were investigated by spark plasma sintering (SPS). Among the Ni-Y2O3 powders synthesized by the three methods, the AROS powder had approximately 5 nm of Y2O3 crystals uniformly distributed within the Ni particles, whereas the SCS powder contained a mixture of Ni and Y2O3 nanoparticles, and the MA powder formed small Y2O3 crystals on the surface of large Ni particles by milling the mixture of Ni and Y2O3. The average grain size of Y2O3 in the sintered alloys was approximately 15 nm, with the AROS sinter having the smallest, followed by the SCS sinter at 18 nm, and the MA sinter at 22 nm. The yield strength (YS) of the SCS- and MA-sintered alloys were 1511 and 1688 MPa, respectively, which are lower than the YS value of 1697 MPa for the AROS-sintered alloys. The AROS alloy exhibited improved strength compared to the alloys fabricated by SCS and conventional MA methods, primarily because of the increased strengthening from the finer Y2O3 particles and Ni grains.
In recent years, juvenile offenders have made up an increasing number of all criminal suspects, and minor crimes are becoming a more serious social problem in most countries and regions around the world. While community correction occupies a very important position in the minor crime punishment system, current community correction risk assessments mainly depend on qualitative analysis or simple mathematical statistics using collected data. In combination with relevant theories and regulations, this paper offers a systematic look at the development and theories of community correction and the related risk assessment system and analyzes the characteristics of community correction risk assessment methods of juvenile offenders in different countries. Moreover, it discusses some new risk assessment technologies based on artificial intelligence theory for community correction risk evaluation of juvenile offenders. The effectiveness of the proposed community correction risk assessment method is verified using some real-world community correction assessments.
In this study, the antioxidant activity of methanol extracts of wheat sprouts grown in wild fields and cultivated fields and harvested at various times were analyzed to compare the quality characteristics of the wheat sprouts as a function of their cultivation and harvest time, as well as for the development of functional materials. The total polyphenolic and flavonoid content, as well as antioxidant activity of the wheat extracts, were subsequently analyzed. The ABTS radical scavenging activity of the wheat extract increased from 16.97 mg TEAC/g sample on cultivation day three in cultivated field wheat sprouts to 25.99 mg TEAC/g sample after seven days of wild field cultivation. The total polyphenol content increased from 17.08 mg GA eq/100 g in cultivated field wheat sprouts grown for three days to 28.70 mg GA eq/100 g after seven days of wild field cultivation. In addition, the flavonoid content increased from 7.02 mg catechin eq/100 g (7 days) to 8.47 mg/g after 12 days of wild field cultivation. Notably, the activity subsequently decreased. These results suggest that the wheat sprouts with higher biological activity were those produced from the wild field after 20 days.
PURPOSES : The purpose of this study is to suggest a thermal expansion coefficient measurement method using an embedded strain transducer (EST) and vibrating wire gauge (VWG), as well as to evaluate the reliability of the proposed methods by comparing them with the AASHTO T 336-10 standard method.
METHODS : To apply the AASHTO 336-10 test method, which is the criterion for reliability evaluation, a reference specimen using stainless steel (sus304) is manufactured, and a thermal expansion coefficient of 17.308με/°C is obtained based on ISO regulations. Using the reference specimen, the correction factor of the thermal expansion coefficient measurement equipment is measured to be 2.93με/°C, and using this value, the thermal expansion coefficient of the mortar specimen containing the embedded gauges is measured accurately. The reliability of the proposed experimental method is evaluated by measuring the thermal expansion coefficient of the embedded gauge with temperature compensation and then comparing it with that of the reference specimen.
RESULTS : The coefficient of thermal expansion of the mortar specimen is measured to be 12.423με/°C based on AASHTO 336-10, 11.963με/°C using the EST method, and 12.522με/°C using the VWG method. Based on the results obtained using the AASHTO method, the embedded gauges show a difference of 1%~3% in terms of the average results, as well as a difference in the standard deviation of 0.059~0.186. Therefore, our level of confidence in the thermal expansion coefficient experiment using the embedded gauges is high.
CONCLUSIONS : When using the AASHTO 336-10 test method, the thermal expansion coefficient should be obtained by measuring the length change of the specimen; however, some engineering judgment of the experimenter is required when the measurement values fluctuate during the temperature stabilization period. In the thermal expansion coefficient test using embedded gauges (EST and VWG), temperature compensation must be performed. Furthermore, it is assumed that the temperature difference between the water tank and test specimen does not significantly affect the thermal expansion coefficient measurement because the important point is not the actual temperature value but the temperature gradient. For reliability evaluation, a statistical significance review of the strain distribution by measurement method is performed via a T-test comparing with the AASHTO test result (12.423με/°C) and the reliability level for each measurement method remains confidential.