This study investigated the characteristics of personal PM2.5 exposure among 109 participants residing in Seoul over a two-month period, from February 2024 to April 2024. The participants were categorized into four sub-populations, and personal exposure to PM2.5 was assessed using portable monitors, GPS, and time-activity diaries. To understand the time-activity patterns, the daily occupancy rate for different microenvironments was calculated. Additionally, daily PM2.5 exposure contribution and integrated exposure were quantified. A time series analysis was conducted to identify differences in time-activity patterns and PM2.5 exposure among the sub-populations. ANOVA analysis indicated statistically significant differences in PM2.5 concentrations across populations and microenvironments (p<0.05). However, post-hoc analysis revealed specific microenvironments within certain sub-populations where PM2.5 concentration differences were not significant (p>0.05). All sub-populations spent more than 90% of their time indoors, and the results for exposure contribution and integrated exposure indicated that the home, which had the highest occupancy rate, was the most significant contributor to PM2.5 exposure. This study is expected to serve as foundational data for future indoor air quality management and the development of personalized strategies for reducing PM2.5 exposure.
The purpose of this study is to validate and verify a head nose exposure inhalation system for nano particle inhalation toxicity studies. Carbon nano tube(CNT) particles were generated by a chemical vapor deposition(CVD) generator. And purchased single wall carbon nanotubes(SWCNT) and multi wall carbon nanotubes(MWCNT) were generated by an atomizer. CNT particle distribution was measured by Scanning Nano-Particle Spectrometer(SNPS) and Condensation Particle Counter(CPC). Diameter and length of MWCNT generated by CVD were 10~40 nm and 220~20 μm respectively. Particle number concentration of MWCNT generated by CVD were 1.3×105, 4.1×104, 5.6×103#/cc in high, middle, low chamber respectively. Distribution of particles which were less than 100 nm was 45%. Particle number concentration of SWCNT generated by atomizer after magnetic stirring were 8.5×106, 5.3×105, 1.1×104#/cc and after sonication 6.7×106, 4.1×105, 9.5×103#/cc in high, middle, low chambers respectively. Particle number concentration of SWCNT generated by atomizer after magnetic stirring were 6.7×106, 4.6×105, 8.6×103#/cc and after sonication 7.7×106, 5.1×105, 1.3×104#/cc in high, middle, low chambers respectively. We set up head nose exposure inhalation system to conduct a study on nano particle inhalation toxicity. There were sufficient particle number concentrations of nano particles generated in each chamber.
본 연구는 한국 제조기업들의 환노출 존재를 확인하고 그 특성을 규명하고자 하였다. 많은 한국 제조기업들에게서 환노출이 추정되었다. 원화의 달러화나 엔화에 대한 가치하락은 동시적으로는 기업의 가치를 상승시키는 방향으로 환노출이 추정되는 경향이 있다. 그러나 지연된 환노출 추정의 결과 원화의 가치하락은 시간이 흐름에 따라 기업의 가치를 감소시키는 방향으로 영향을 미치는 경향이 있다. 두 분석 기간의 환노출 기업 비율로 볼 때 동시적 환노출은 감소하고 지연된 환노출은 증가하는 경향이 있다. 이러한 결과는 원화의 가치하락은 즉각적으로는 기업의 가치를 상승시키는 영향을 미치지만 장기적으로는 기업의 가치를 하락시키는 영향을 미치는 것으로 해석할 수 있다. 환율과 기업 특성 변수의 관련성 분석 결과 일반적으로 환노출과 관련이 있는 것으로 인식되고 있는 외화부채비율, 수출비율, 수입비율, 해외직접투자비율, 연구개발비비율 등이 환노출 결정에 결정적 영향을 주지는 않는다. 또한, 산업별 특성도 나타나지 않았다. 외화부채비율이 환노출과 관련이 있는 것으로 나타났으나 결정적 변수는 아니다. 결국, 한국 제조기업의 경우 국제경영 활동 정도를 나타내는 특정의 특성 변수에 의해서 환노출이 결정되는 것은 아니라고 할 수 있다. 이보다는 기업의 규모가 환노출과 더 밀접한 관련이 있는 것으로 나타났다.
In this study, alkali-activated slag (AAS) concrete made with blast furnace slag (BFS) was investigated as a replacement for ordinary Portland cement (OPC) concrete for changes in the compressive strength before and after CO2 exposure and chemical reactions with CO2. Before CO2 exposure, the compressive strength of AAS concrete was found to be up to 21 MPa, which was higher than that of OPC concrete. Exposing AAS concrete to CO2 at 5,000 ppm for 28 days did not significantly change the compressive strength. In contrast, the compressive strength of OPC concrete decreased by 13% in the same conditions. In addition, AAS concrete had the highest CO2 capture capacity of greater than 50 g CO2/kg, while the CO2 capture capacity of OPC concrete was only 2.5 g CO2/kg. Rietveld analyses using XRD results showed that fractions of main calcium-silicate-hydration (C-S-H) gels on the surface of AAS concrete did not significantly drop after CO2 exposure; the C-S-H gel on the AAS concrete was continuously produced by reacting with the SiO2 produced after the reaction with CO2 and Ca(OH)2 inside the concrete, with the result that the compressive strength of AAS concrete did not change after CO2 exposure. Thus, AAS concrete can be applied to CO2-rich environments as both a stable construction material and a CO2 sequestrate agent.
Koreans have sedentary lifestyles and use under-floor heating called Ondol as home heating systems. Sick Building Syndrome (SBS) caused by VOCs released from flooring material has been of significant interest in residential apartments. In this study, we measured exposure to VOCs by having test subjects breathe under conditions of high surface temperature. The results showed that the emission level of VOCs was high at 40oC in the early stage of the experiment. However, 20 days after the experiment began, the emission level was reduced by 0.9-4 times in each product at 40oC. The exposure to VOCs released from floor coverings was measured by taking into account the average respiratory rate, weight, and activity hour of test subjects and presuming that people are exposed to VOCs all the time while staying indoors. The level of emission from FJR of low-cost PVC floor coverings was the highest among the tested coverings, but the exposure to VOCs emission from the covering was relatively low at 0.025 mg/kg/day at 40oC. The amount of toluene detected from this experiment was the highest among VOCs emitted from floor coverings. The hazard quotient (HQ) of toluene detected in this test was over 20 times smaller than the risk characterization level of 0.1. It was, therefore, estimated that the emission of toluene from the floor surface would not be critically harmful to residents.
콘크리트는 내화재료로서 우수한 성능을 발휘하지만 화재가 지속됨에 따른 재료특성 변화 또는 성능저하의 위험을 갖는다. 이 연 구는 실물모형 철근 콘크리트 (RC) 보를 활용하여 비재하 화재 실험을 수행하여 화재노출 전후의 콘크리트 및 보강철근의 재료특성을 실험적 으로 분석한 연구이다. 화재실험에 사용된 보는 길이 4 m의 RC 보로서 KS F 2257 화재실험 규격에 따라 시험 체를 제작 및 화재실험을 수행하 였다. 화원의 가력은 ISO 834의 표준화재 곡선을 사용하였으며 보 가열부에서의 온도를 계측하고자 하면 및 측면에 열전대를 설치하였다. 실 험결과, 화재에 노출된 화재 코어 공시체의 경우 약 11 MPa로 약 66%의 강도저하가 발생하였다. 화재에 직접 노출된 철근의 경우 노출되지 않 은 철근에 비해 약 17%에 해당하는 75 MPa의 항복강도 저하를 나타낸 것으로 분석되었다. 철근의 경우 콘크리트라는 내화피복에 의하여 보호 되어 약 4시간의 화재 실험에서도 온도는 한계온도의 최댓값인 649°C를 크게 상회하지 않는 것으로 나타났다.
The aim of this study is to determine the exposure concentration of tetrabromobisphenol A(TBBPA) in southwestern coast and their photodecomposition rate. Also, it is to identify the radical species of the photodecomposition of TBBPA and their reactive byproducts using the electron spin resonance(ESR) method. TBBPA was not detected in any of the sea water samples from Mokpo, Gunsan, or Goheung. The sediment samples from Mokpo contained not detection(N.D)∼50.0 ng/g dry wt., while those from Gunsan contained N.D∼28.5 ng/g dry wt. and those from Goheung contained N.D∼7.3 ng/g dry wt. The photodecomposition rates were 2.56 × 10-6/hr by visible light(400 nm), 7.98 × 10-6/hr by ultraviolet light(300 nm <), and 6.78 × 10-6/hr by sunlight. Also, we confirmed that singlet oxygen and hydroxyl radicals are the key reactive oxygen species at wavelengths greater than 400 and 300 nm, respectively. This study shows that the main byproducts formed during irradiation at wavelengths above 300 nm are 2,6-dibromobenzosemiquinone radical(2,6-DBSQ·-) and g-value 2.0048 doublet spectrum.
In the current concrete structure of the highway is still the major problem most of concrete deterioration caused by the freeze-thaw and de-icing salt, which is of issues that are not completely resolved. In particular, a single freezing event does not cause much harm, durability of concrete under multi-deterioration environment by repeated freeze-thaw and de-icing salt is rapidly degraded and reduce its service life. In this study, to considering environmental characteristics when design and construction of concrete structures, the exposure environmental guidelines were established by investigation the application rates of de-icing salt, temperatures and snowfall characteristics during five years (2004∼2008) by regions. Also, damage condition and chloride content of the structural at regions of moderate and severe environmental exposures were investigated.
브랜드 노출의 다양한 상황에서 브랜드 시각요소에 대한 연구는 것은 마케터나 디자이너에게 매우 실질적이고 실행에 단서를 제공할 수 있다. 최근 브랜드 연구의 다양한 확산에 따라 브랜드의 시각요소에 대한 연구 브랜드 시각요소의 디자인 특성에 따른 디자인 반응연구인, Schechter의 연구, Henderson & Cote의 연구, Henderson & Cote, Leong & Schmitt의 연구, 한상만 & 최주리의 연구 내용의 분석을 하였다. 각 연구에서 도출 된 반응차원과 연구 의 성과에 대한 분석으로 디자인 제작 시 반영 가능성을 모색하였다.
This study was designed to evaluate qualitatively and quantitatively the pollutant compositions, which were emitted from three types of mosquito repellents(MRs)(mat-, liquid-vaporized, and coil-type) by utilizing a 50-L environmental chamber. A qualitative analysis revealed that 42 compounds were detected on the gas chromatography/ mass spectrometer system, and that the detection frequency depended upon chemical types. Nine of the 42 compounds exhibited a detection frequency of 100%. Four aromatic compounds(benzene, ethyl benzene, toluene, and xylene) were detected in all test MRs. The concentration equilibriums in the environmental chamber were achieved within 180 min after sample introduction. The coil-type MR represented higher chamber concentrations as compared with the mat- or liquid-vaporized-type MR, with respect to the target compounds except for naphthalene. In particular, the chamber concentrations of ethyl benzene, associated with the use of coil-type MR, were between 0.9 and 65 mg m-3, whereas those of mat- and liquid-vaporized-type MRs were between 0.5 and 2.0 mg m-3and 0.3 and 1.4 mg m-3, respectively. However, naphthalene concentrations in the chamber, where a liquid-vaporized-type MR was placed, were measured as between 17.8 and 56.3 mg m-3, but not detected in the chamber, where a mat- or coil-type MR was placed. The empirical model fitted well with the time-series concentrations in the environmental chamber(in most cases, determination coefficient, R2 ≳ 0.9), thereby suggesting that the model was suitable for testing emissions. In regards to the target compounds except for benzene, although they were emitted from the MRs, health risk from individual exposure to them were estimated not to be significant when comparing exposure levels with no observed adverse exposure levels or lowest observed adverse exposure levels of corresponding compounds. However, it was concluded that the use of MRs could be an important indoor source as regards benzene.