검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 73

        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Air conditioner filters purify the air of indoor environments by removing air pollutants and supporting the efficiency of the unit’s cooling function. However, an air conditioner filter can become a microenvironment in which some fungi can grow as dust continues to accumulate and favorable humidity conditions are formed. Fungal growth in air conditioner filters could lead to fungal allergies or fungal diseases, in addition to emitting a foul odor. In an effort to understand what species causes this malodorous problem, we investigated the diversity of fungi found in air conditioners. Fungi were sampled from the collected air conditioner filters and grown on DG18 agar media. After purification for pure isolates, species identification was undertaken. Colony morphology was observed on PDA, MEA, CYA, and OA media. Microstructures of fruiting body, mycelia, and spores were examined using a light microscope. Molecular identification was performed by PCR and sequencing of PCR amplicons, and molecular phylogenetic analysis of sequenced DNA markers, including the Internal Transcribed Spacer (ITS), the 28S large subunit of the nuclear ribosomal RNA (LSU rDNA), the β-tubulin (BenA) gene, the Calmodulin (CaM) gene, and the DNA-directed RNA polymerase II subunit 2 (RPB2) gene. Through this identification process, we found two fungal species, Aspergillus miraensis and Dichotomopilus ramosissimus, which are unrecorded species in Korea. We will now report their morphological and molecular features.
        4,200원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For motor controller designers, building a simulation environment is not a difficult process. After verifying the controller by simulation, it is common to select 20kHz for the current control loop, 1kHz for the speed loop, and 100Hz for the position loop when implementing the actual HW embedded system. This is because maximized cycles (20kHz) for each control loop are unnecessary in control theory and are a waste of cost and HW resources. However, in a simulation environment, each loop will often have the same control cycle (20kHz maximum). This is because we think it is unnecessary to reflect this part in the simulation. In this paper, it is shown that the difference in the sampling time of each control loop makes a big difference in the simulation result, and as a solution, it is proposed to apply LPF to the position loop output stage. In the process, the reasons for the differences were analyzed, and the effect of LPF, the reason for application, and the feasibility of implementation were proved by actual software coding.
        4,000원
        7.
        2023.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous ceramics are used in various industrial applications based on their physical properties, including isolation, storage, and thermal barrier properties. However, traditional manufacturing environments require additional steps to control artificial pores and limit deformities, because they rely on limited molding methods. To overcome this drawback, many studies have recently focused on fabricating porous structures using additive manufacturing techniques. In particular, the binder jet technology enables high porosity and various types of designs, and avoids the limitations of existing manufacturing processes. In this study, we investigated process optimization for manufacturing porous ceramic filters using the binder jet technology. In binder jet technology, the flowability of the powder used as the base material is an important factor, as well as compatibility with the binder in the process and for the final print. Flow agents and secondary binders were used to optimize the flowability and compatibility of the powders. In addition, the effects of the amount of added glass frit, and changes in sintering temperature on the microstructure, porosity and mechanical properties of the final printed product were investigated.
        4,000원
        8.
        2023.05 구독 인증기관·개인회원 무료
        Spent filters contained in drums of radioactive waste generated from nuclear power plants are contaminated with various radioactive isotopes due to their use in various water purification processes in the system. Radiation doses from the spent filters can vary from low to high levels. To dispose of drums containing spent filters as radioactive waste, the inventory of radioactive isotopes in the filters must be determined. Two methods for determining the inventory are indirect measurement using scaling factors and direct analysis of filter samples. This study suggests a method to determine the appropriate sample size for each drum based on the number of filters stored in the drum, when direct analysis is used to determine the inventory of radioactive isotopes. In particular, Visual Sample Plan (PNNL) software’s Item Sampling function was used to calculate the sample size, considering the confidence level and minimum acceptable coverage rate. As a result, assuming that the number of filters packed per drum ranges from a minimum of 1 to a maximum of 30, the study suggests that a full inspection is required for drums containing 9 or fewer filters, while drums containing 10 filters should be sampled with 9 samples, 11 filters with 10 samples, 12-13 filters with 11 samples, 14-16 filters with 12 samples, 19-22 filters with 14 samples, 23-26 filters with 15 samples, and 27-30 filters with 16 samples.
        9.
        2023.05 구독 인증기관·개인회원 무료
        In order to permanently dispose of radioactive waste drums generated from nuclear power plants, disposal suitability must be demonstrated and the nuclides and radioactivity contained in the waste drums, including those in the shielding drums, must be identified. At present, reliable measurements of the nuclide concentration are performed using drum nuclide analysis devices at power plants and disposal facilities during acceptance inspection. The essential functions required to perform nuclide analysis using the non-destructive assay system are the correction for self-attenuation and the dead time correction. Until now, measurements have mainly been performed for drums containing solid waste such as DAW drums using SGS calibration drums with ordinary iron drums. However, for drums containing non-uniform radioactive waste, such as waste filters embedded in cement within shielding drums, a separate calibration drum needs to be produced. In order to produce calibration drums for shielded and embedded waste drums, the design considered the placement of calibration sources, setting of shielding thickness, correction for medium density, and cement mixing ratio. Based on these considerations, three calibration drums were produced. First, a shielding drum with an empty interior was produced. Second, a density correction drum filled with cement was produced to create apparent density on the surface of the shielding drum. Third, a physical model drum was produced containing a mock waste filter and cement filled in the shielding drum.
        10.
        2023.05 구독 인증기관·개인회원 무료
        Commercial operation of KORI Unit 1 ended in 2017, and the final decommissioning plan is currently under approval from the KINS. In order for the dismantling waste to go to the repository, it is judged that the radioactive waste generated during the commercial operation should be treated and disposed in advance. Among these radioactive wastes, spent filters contain various radionuclides. The radiation dose rate from the radiation coming out of the filters ranges from a low dose rate to high dose rate. Therefore, in order to handle the spent filters, a remote processing system is required to reduce the radiation exposure of workers. This paper evaluates the radioactive inventory of filters that are stored in the filter room at the KORI unit #1. For this purpose, a method for predicting the radioactivity of each nuclide in the filter, based on the radiation dose rate, has been described using the MicroShield code, which is a commercial shielding code. The information on the filters in the field has only the creation date, type, size, and surface dose rate. In order to evaluate the radioactivity inventory using such limited data, it is possible to know the nuclide radioactivity ratio in the filter. We took out some of the filters stored on site and measured from using the ISCOS system, a gamma nuclide analyzer. The radioactivity of each nuclide in the filter was inferred by modeling with the MicroShield code, based on the radiation dose rate and the radioactivity value of each nuclide measured in the field.
        11.
        2023.05 구독 인증기관·개인회원 무료
        The spent filters used to purify radioactive materials and remove impurities from primary systems at nuclear power plants (NPPs) have been stored for long periods in filter storage rooms at NPPs due to concerns about the unproven safety of the treatment method, absence of disposal facilities, and risk of high radiation exposure. In the storage room at Kori Unit 1, there are approximately 227 spent filters of 9 different types. The radiation dose rates of filters range from 0.01 to 500 mSv/hr. Recently, a comprehensive plan has been established for the treatment and disposal of radioactive waste that has not yet been treated to facilitate decommissioning of NPPs. As a follow-up measure, compression and packaging optimization processes are being developed to treat the spent filters. KHNP plans to dispose of the spent filters after compressing, packaging, and immobilizing them. However, the spent filters are currently stored without being sorted by type or radiation intensity. If the removal and packing of the filters are done randomly without a plan for the order of withdrawal and subsequent processes, issues may arise such as a decrease in drum loading efficiency and exceeding the dose limit of the package. In this study, the number of drums needed to pack the spent filters was calculated, considering the filter size, weight, quantity, dose rate, shielding thickness of drum, and loadable quantity in a shielding drum (SD). Then, the spent filters that can be loaded on each drum were classified into one group. In addition, the withdrawal order for each group was set so that the filter withdrawal, compression, and packaging processes could be performed efficiently. The spent filter groups are as follows: (1) compression/12 cm SD (17 groups), (2) compression/16 cm SD (6 groups), (3) non-compression/ intermediate storage container (17 groups, additional radiation attenuation required due to high dose rate), and (4) unclassified (5 groups, determined after measurement due to lack of filter information). The withdrawal order of the groups was determined based on several factors, including visual identification of the filter, ease of distribution after withdrawal, work convenience, and safety. Due to the decay of radioactivity over time, the current dose rate of the spent filters is expected to be much lower than at the time of waste generation. Therefore, in the future, sample filters will be taken from the storage room to measure their radioactivity and radiation dose rate. Based on these measurements, a database of radiological characteristics for the 227 filters will be created and used to revise the filter grouping.
        16.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The decommissioning of nuclear facilities produces various types of radiologically contaminated waste. In addition, dismantlement activities, including cutting, packing, and clean-up at the facility site, result in secondary radioactive waste such as filters, resin, plastic, and clothing. Determining of the radionuclide content of this waste is an important step for the determination of a suitable management strategy including classification and disposal. In this work, we radiochemically characterized the radionuclide activities of filters used during the decommissioning of Korea Research Reactors (KRRs) 1 and 2. The results indicate that the filter samples contained mainly 3H (500–3,600 Bq·g−1), 14C (7.5–29 Bq·g−1), 55Fe (1.1– 7.1 Bq·g−1), 59Ni (0.60–1.0 Bq·g−1), 60Co (0.74–70 Bq·g−1), 63Ni (0.60–94 Bq·g−1), 90Sr (0.25–5.0 Bq·g−1), 137Cs (0.64–8.7 Bq·g−1), and 152Eu (0.19–2.9) Bq·g−1. In addition, the gross alpha radioactivity of the samples was measured to be between 0.32–1.1 Bq·g−1. The radionuclide concentrations were below the concentration limit stated in the low- and intermediatelevel waste acceptance criteria of the Nuclear Safety and Security Commission, and used for the disposal of the KRRs waste drums to a repository site.
        4,300원
        17.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The SLA 3d printer is the first of the commercial 3D printer. The 3D printed output is printed hanging on the bed that move to the upper position. Sandblasted bed is used to prevent layer shift. If sandblasting is wrong, the 3D printed output is layer shifted. For this reason, 3D printer manufacturing companies inspect the bed surface. However, the sandblasted surface has variety of irregular shapes and craters, so it is difficult to establish a quality control standard. To solve problems, this paper presents a standardized sandblasting histogram and threshold. We present a filter that can increase the classification rate.
        4,000원
        18.
        2022.05 구독 인증기관·개인회원 무료
        As the decommissioning of Kori Unit 1 progresses, securing technology for treatment and disposal of radioactive wastes that have not been disposed of so far, such as spent filters, is recognized as an urgent task. In this study, a method of confirming the disposal suitability of spent filters was presented by reviewing the waste characteristics as presented in the waste acceptance criteria (WAC). The waste characteristics to be satisfied to ensure disposal suitability of waste are largely classified into general requirements, solidification and immobilization requirements, radiological requirements, physical requirements, chemical requirements, and biological requirements. First, the general requirement is to prove that the prohibited waste form has not been introduced into items related to waste form and packaging, and to confirm the suitability of disposal through step-by-step packaging photos, generation information, X-ray inspection, and visual inspection. Second, in the solidification and immobilization requirements, spent filters are non-homogeneous waste, and if the total radioactivity concentration of nuclides with a half-life of more than 20 years is 74,000 Bq·g−1 or more, they must be immobilized. Third, in order to meet the characteristic criteria for nuclides and radioactivity concentration, sampling and scaling factors development are required and based on this, nuclides must be identified and demonstrated to be below the disposal concentration limits. Surface dose rate and surface contamination should be measured in accordance with standardized procedures and disposal suitability should be confirmed through document tests recording the measured values. Fourth, in order to satisfy the physical requirements of the particulate matter and filling rate characteristics, the spent filter must be immobilized, if necessary, thereby ensuring disposal suitability. Meanwhile, free water in the spent filter should be removed through pre-drying and dehydration, and the disposal suitability should be confirmed by applying a test. Fifth, the criteria for chelating agents should be checked for disposal suitability through operation records and component analysis of spent filters, and documents, that can prove harmful substances are removed in advance and no harmful substances are included in the package, should be provided. Lastly, in biological requirements, if the spent filters contain corrosive or infectious substances, they should be removed in advance and disposal suitability should be confirmed by providing documents that can prove that such substances are not included in the package.
        19.
        2022.05 구독 인증기관·개인회원 무료
        This study established a process to ensure the disposal suitability of spent filters stored in the untreated state in Kori unit 1 and presented the following procedures and requirements for confirming the disposal suitability for each process. The process for securing spent filter disposal suitability consists of collecting spent filters, compression, immobilization, analysis and packaging, and storage stages. The requirements for confirming the acceptance criteria for each process are as follows. (1) Collecting: Since the high radioactivity spent filters are being stored in the filter room of Kori unit 1, those are collected by a remote system to minimize the exposure dose of workers due to spent filter handling. In order to satisfy the surface dose rate requirements, spent filters with a surface dose rate of 10 mSv·hr−1 or more are classified and collected, and stored temporary storage place until a separate treatment plan is determined. The checkpoints in this process are the surface dose rate, etc. (2) Compression: The collected spent filters are analyzed gamma nuclides such as Co-60 and Cs-137, using a field-applicable nuclide analyzer, and then applying the scaling factors to determine whether it is disposable. Spent filters whose radioactivity concentration is confirmed to be less than the disposal concentration limit is compressed into compression ratios determined by surface dose rate. The checkpoints in this process are nuclide information, surface dose rate, compression ratio, spent filter loading quantity, etc. (3) Immobilization: A spent filter is a non-homogeneous waste that is immobilized with a proven safety material such as cement if the total radioactivity concentration of nuclides with a half-life of more than 20 years is 74,000 Bq·g−1. Meanwhile, immobilization of inhomogeneous waste can be considered to satisfy disposal criteria such as particulate matter and filling rate. The checkpoints in this process are the immobilizing material, filling rate, etc. (4) Analysis and Packaging: Immobilized drums shall be determined to be 95% or more of the total radioactivity of waste packages by measuring the radioactivity concentration of nuclides using a nuclide analysis device. Finally, measure the surface dose rate and surface contamination of the package, and attach the package label recording the identification number, date, total radioactivity, surface dose rate, and surface contamination information to the packaging container. (5) Storage: Packaging containers are moved to and stored in a temporary waste storage or storage area before disposal.
        1 2 3 4