Revolving doors can impede rapid evacuation during fire emergencies due to their structural characteristics, which pose a potential hazard. This study utilized the Pathfinder simulation software to analyze and compare the Required Safe Egress Time (RSET) and occupant density based on revolving door passage speed and utilization rates under different evacuation scenarios. When both revolving doors and swing doors were operational, or when revolving doors were closed and only swing doors were used, areas with an occupant density exceeding 3 persons per square meter were observed in the entrance area. However, when revolving doors were deactivated and the width of swing doors was expanded, a reduction in RSET was observed, and no areas with an occupant density exceeding 3 persons per square meter were identified. Therefore, buildings equipped with revolving doors should acknowledge the risks associated with their use. They must ensure sufficiently wide emergency exits or implement systems that allow revolving doors to open during emergencies to facilitate efficient evacuation. Furthermore, it is crucial to establish additional regulations governing the operation and safety standards of revolving doors during emergency scenarios.
Fire emergencies in complex buildings present significant challenges to occupants, requiring rapid decision-making and efficient evacuation. This study examines the impact of fire location awareness on evacuation behavior, with fear and anxiety as mediating variables. A survey was conducted with 309 participants who had experience using multi-story buildings, and structural equation modeling (SEM) was employed to analyze the relationships among fire location awareness, fear and anxiety, and evacuation behavior. The results indicate that lower fire location awareness significantly increases fear and anxiety (β = -0.81, p < .001), while higher levels of fear and anxiety are associated with increased evacuation behavior (β = 0.496, p < .001). Furthermore, fire location awareness has a direct negative effect on evacuation behavior (β = -0.282, p < .01) while also exerting an indirect influence through fear and anxiety (β = 0.402, p < .001), confirming a partial mediation effect. These findings suggest that occupants who are unable to accurately perceive the fire’s location experience heightened levels of fear and anxiety, which may in turn excessively drive their evacuation behavior. Based on these findings, this study highlights the necessity of improving fire location awareness through enhanced alarm systems, real-time notifications, and preemptive evacuation training. Additionally, psychological preparedness programs should be introduced to regulate fear and anxiety, preventing excessive panic that may lead to inefficient evacuation behavior. Future research should explore experimental methodologies and real-life evacuation scenarios to further validate these relationships and develop optimal fire safety measures.
To analyze the effect of fire in electric-vehicle battery on concrete cement structure. A scenario evaluation was conducted for fire occurrence due to external influences on lithium battery cells used in electric vehicles. Visual inspection was conducted at each stage of the battery fire, and the fire duration and temperature were measured. The battery temperature rise curve and temperature during fire have been examined previously. The stability of a cement structure was evaluated via X-ray diffraction and SEM analyses of the reaction-product changes with respect to temperature. The battery temperature rise curve shows that the battery begins to change at 200 °C–300 °C. However, the general stage of battery damage cannot be readily confirmed from the literature. The current experiment and literature review indicate that battery fire can cause the fire temperature to increase beyond 1000 °C within a few seconds. The reaction product changes structurally in cement from 300 °C or higher. Many voids are generated owing to the decomposition of Ca(OH)2 and C-S-H gel. The temperature of an electric-vehicle fire increases rapidly to 1000 °C or higher within a few seconds. High temperatures change the reaction products in cement structures, thus creating internal voids and cracks and reducing the stability of the structure; therefore, the appropriate countermeasures must be identified.
In this study, fire extinguisher system to which form fire extinguisher agents were adopted was applied to the combat vehicle crew room to apply fire extinguishing performance and acid gas safety that meet the national defense standards. As a result of evaluation and verification, the following conclusions were drawn. For standard fire sizes in the combat vehicle crew's standard model, we ignited using a mixture of Novec 1230 and Halon 1301 form extinguisher agent and released form extinguisher agent after 30 seconds to determine the fire extinguishing time. The amount of acid gas generated met the criteria in all cases. When the fire size was increased to 0.12m2 and a 2.0mm nozzle was used, all of the extinguishing time, the amount of acid gas generated, and the concentration of Novec 1230 met the criteria. Despite the more difficult conditions to extinguish the fire by making the fire larger, it was possible to confirm the extinguishing performance of the Novec 1230 form extinguisher agent and its safety against acid gas.
In this study, the time to endure after conducting a test pressure test was analyzed according to the hose development length of the household hose reel indoor fire hydrant according to the apartment area. First, when the household area is 50㎡, a household hose reel indoor fire hydrant is installed inside the bathroom, and the hose is bent in a circular shape to the farthest fire point, and the test pressure is found to be inadequate only when the hose development length is 5m. When the household area of an apartment is 84㎡. It was found that the test pressure was inappropriate only when the hose deployment length was 5m with the hose bent in a circular shape to the farthest point by installing a household hose reel indoor fire hydrant inside the bathroom. When the hose deployment length was 15m, the average experimental value was 3.9 Mpa and the water pressure resistance time was 8 min. It was found that the test pressure and holding time were suitable for all of the working pressure of 0.7 Mpa, the inner diameter of the hose 25mm and 32mm, and the hose deployment length. When the installation of the hose reel indoor fire hydrant hose was 3 Mpa, the internal diameter of the hose was 25mm, 32mm, and the length of the hose deployment were all suitable.
Due to the smoke generated during a fire in an underground parking lot, initial response is difficult, resulting in an increase in life and property damage. In this study, fire cases in underground parking lots were analyzed and the necessity of legal and institutional amendments was suggested to improve the installation of smoke removal facilities, sprinkler facilities, emergency outlet facilities, and connected water pipe facilities. First, it is necessary to improve the smoke removal facilities of apartment underground parking lots. Second, it is necessary to install wet sprinklers in underground parking lots only when it has a structure or device capable of preventing freezing. It is stipulated in a manner other than wet in the fire safety technology (NFTC 103) of sprinkler facilities. However, wet sprinklers may be installed only in places where there is no fear of freezing, or when a structure or device capable of preventing freezing has been used. Third, it is necessary to amend the "Firefighting Facility Installation and Management Act" so that the standards for installing emergency outlet facilities are not regulated according to the number of underground floors, but according to the sum of the floor areas of the underground floors.
Apartments such as those on the 29th floor are generally classified as high-rise buildings; however, they may be excluded from certain safety regulations since they do not meet the legal definition of "high-rise" buildings. According to the Korean Building Act, buildings with 30 or more floors are typically regarded as high-rise buildings, warranting specific disaster prevention and safety standards. Nevertheless, buildings between 20 and 30 floors are often excluded from high-rise building regulations, which may lead to relatively insufficient safety standards and has been identified as a "blind spot in safety management." Enhancing appropriate safety facilities and strengthening regulations for such buildings is crucial, particularly in areas such as fire prevention, evacuation planning, and fire-fighting facilities. This study compares and examines the evacuation times of designated evacuation safety zones and emergency elevators in high-rise apartments as defined by the Building Act and in buildings constructed with floors between 20 and 30 through evacuation simulations.
국내에서 지진 발생빈도가 증가함에 따라 다가구주택 필로티기둥의 내진보강이 필수적이다. FRP 패널은 경량성과 고강도를 갖춘 내진 보강재료 사용되고 있으나, 상대적으로 낮은 임계온도로 인해 화재에 취약하다. 따라서 FRP 패널로 보강된 RC 기둥의 내화 성능을 확보할 방안이 필요하다. 본 연구에서는 FRP 패널로 보강된 RC 기둥의 내화성능을 평가하기 위해, FRP 패널의 열적특성(비열, 열전도율, Weight loss)을 확인하는 소재시험을 진행하였다. 또한, FRP 패널로 보강된 RC 단주기둥에 뿜칠을 도포하고, 표준화재 1시간 동안의 온도거동을 분석하였다.
This study aims to analyze the forest fire risk in the Gangwon region using FlamMap, a fire behavior prediction software. The research focuses on the large-scale wildfire that occurred in Gangneung on April 11, 2023. By comparing the actual fire spread data with the simulation results, the accuracy of the FlamMap model was evaluated. The actual fire exhibited a flame length of 5 to 10 meters, with a maximum of 15 meters, while the simulation predicted a range of 3.35 to 6.10 meters. The rate of spread in the actual fire reached up to 40 meters per minute, whereas the simulation forecasted a maximum of 27 meters per minute. Fireline intensity during the first 180 minutes reached 50,000 kW/m in the actual fire, while the simulation results varied between 3,500 and 25,000 kW/m, with some sections reaching up to 50,000 kW/m. Additionally, the actual fire reached nearby residential areas within 3 hours, while the simulation estimated a time range of 503 to 720 minutes. These discrepancies highlight the need for incorporating dynamic weather data and region-specific fuel conditions in future simulations for more accurate fire predictions. The findings suggest that improvements in the simulation process could enhance fire prevention and response strategies in forest fire-prone regions like Gangwon.
Tunnel fires have significant social and economic impacts, causing extensive damage to concrete and steel reinforcements at high temperatures. Despite international advancements in fire-resistant designs, the safety measures for tunnel fires in South Korea remain insufficient. This study aimed to evaluate the fire resistance of fiber-reinforced concrete incorporating fire-resistant fibers with a focus on preventing spalling and enhancing structural safety. These findings are expected to contribute to the development of fire-resistant tunnel-design standards. Concrete mixtures with compressive strengths of 27 MPa were prepared according to highway construction material standards. Fiberreinforced concrete samples were produced with fire-resistant fiber dosages of 0.0, 0.6, 0.8, and 1.0 kg per cubic meter. Fresh concrete tests, including air content (KS F 2421) and slump (KS F 2402) tests, were conducted along with compressive strength tests (KS F 2405) on the hardened concrete. The fire resistance was assessed using an electric furnace to simulate the fire curve conditions specified in the Road Tunnel Fire Safety Guidelines based on KS F 2257. Increasing the fiber content led to a slight reduction in slump, likely owing to fiber agglomeration, with minimal effect on workability within the tested range. The air content exhibited negligible variation, indicating that there was no major impact on the air-void system. The compressive strength before the fire resistance test fluctuated but consistently met the design target of 27 MPa. The compressive strength after the fire resistance test across all samples decreased to approximately 2.0 MPa. The fiber-reinforced concrete exhibited reduced internal temperatures compared to the control, which was attributed to heat transfer disruption and the formation of micropores by the fibers. In this study, fiber-reinforced concrete demonstrated improved thermal resistance under fire conditions with minimal impact on the workability and air content within the tested range. Although the compressive strength before the fire resistance test remained adequate, the sharp decline in the post-fire strength highlights the need for further optimization. These findings emphasize the potential of fiber-reinforced concrete as a cost-effective solution for enhancing tunnel fire resistance, thereby supporting the development of safer and more resilient infrastructures.
In this study, we addressed the prevention of fire extinguishing device malfunction caused by noise in the fire detector of automatic fire extinguishing devices applied to mobile equipment such as armored vehicles and tanks. The automatic fire extinguishing system consists of a fire detection unit, an automatic control unit, and a fire suppression unit. In the case of a fire detector, it is a major component of the fire detection unit. Even though no fire occurred during operation in the field, a number of fire extinguisher sprays occurred, and the malfunction of the fire detector, which is a fire detection unit, was reproduced. The cause was identified as noise in the fire detector connector due to vibration and shock that may occur during operation of the mobility equipment. In order to solve this problem, noise generated momentarily from a fire detector is treated as an exception, and when a fire signal is transmitted from the fire detector to the automatic control unit for more than a certain period of time, Software has been improved to enable fire extinguishers to operate. This study analyzed the causes of malfunctions in automatic fire extinguishing devices, which are components of mobile equipment, and derived improvement measures to improve the reliability of automatic fire extinguishing devices.
This paper defines structural and dynamic analysis of a crane used for electric passenger vehicle fire scenarios. The crane model used in the study has a working radius of 9 meters, and under extreme conditions measured with real-world usage in mind, the load at the boom tip is 24.5kN. The boom is assumed to be made of ATOS80, and the pads are assumed to be made of Monomer Casting Nylon. Structural analysis was conducted based on the crane's materials and configuration, and dynamic analysis was performed by dividing the grab method into gripper and hinge types. In the structural analysis, the maximum stress increased as the telescopic boom faced upwards. In the dynamic analysis, the gripper type facing downward showed more stable stress. For the model with an added badge, the structural analysis showed an increase in maximum stress, but the value was negligible, and the maximum stress of the telescopic boom decreased in the dynamic analysis. Based on the analysis results, the suitable materials for the crane are ATOS80 for the lower articulated boom and the telescopic boom, and DOMEX1300 for the upper articulated boom. The gripper type grab method is more stable than the hinge type.
해양 환경에서 발생하는 화재는 일반적인 화재 상황에 비해 빠르게 화염이 전파되기 때문에 초기 발견과 대응이 매우 중 요하다. 최근의 화재 감지 시스템은 카메라 센서와 딥러닝 검출 모델을 활용하여 개발되고 있지만, 해양 환경에 특화된 딥러닝 모델 을 학습하기 위해 해양 환경에서 화재 데이터를 실제로 수집하는 것은 기술적, 경제적 측면에서 어려움이 존재한다. 본 논문에서는 이러한 문제를 해결하기 위해 언리얼 엔진 기반 가상 데이터 생성 도구를 활용하여 가상 환경에서 해양 환경을 구축하고 여러 상황 의 시나리오에서 데이터를 수집하여 해양 환경 화재 가상 데이터셋을 구축하였다. 가상 데이터셋으로 학습한 RT-DETR-L 모델은 실 제 해양 환경에서 발생한 화재 상황을 수집하여 제작한 테스트 데이터셋에서 mAP50:95 0.529를 달성하였다. 또한 가상 데이터로 학습 한 검출 모델은 일반적인 화재 상황이나 항만시설에서 연기만 발생하는 상황에서도 화재를 검출하는 것을 볼 수 있었다. 이를 통해 실제 데이터가 아닌 가상 데이터셋을 사용하여 데이터셋을 구축하여도 해양 환경 화재와 같은 특수한 상황에서의 검출 모델 성능 향 상에 도움을 줄 수 있다는 것을 확인하였다.
건축물의 대공간 및 고층화에 대한 요구가 증가함에 따라 부분매입형합성보의 연구가 진행되고 있다. 부분매입형합성보는 휨 성능을 증대시키기 위해 내부에 철근을 보강하여 시공한다. 이는 철근의 부식으로 구조물의 내력 저하를 유발한다. 이를 보완하고자 내 부식성이 우수하고 고강도인 CFRP 보강근에 대한 연구가 진행 중이다. 하지만 CFRP 보강근은 임계온도가 250℃로 낮기 때문에 적절 한 내화피복과 철근량이 필요하다. 따라서 하부철근의 종류와 SFRM 두께를 변수로 표준화재에 노출된 부분매입형합성보의 열전달 해 석을 수행하였고 화재에 의한 저감계수를 고려하여 휨내력을 산정하였다. 또한, 열전달해석과 동일한 사이즈의 실험체를 통해 비재하 수평가열로 실험을 진행하여 열전달 해석 결과와 비교 분석하였다. 해석 결과 SFRM 30 mm 적용 시 1시간의 내화성능을 확보할 수 있다. 또한, 화재 시 하중 조합에 의한 내화성능 평가 시, 무피복임에도 2시간의 내화성능을 가지는 것으로 평가되었다.
도로터널의 연장과 대형화로 인해 화재 발생 시 터널 구조물의 안전확보가 중요한 과제가 되고 있다. 터널에서 화재가 발생할 경우, 콘크리트 라이닝이 고온에 노출되면서 강도저하 및 폭렬에 의한 구조적 손상을 초래할 수 있으며, 이를 방지하기 위해 다양한 내화공 법이 연구되고 있다. 이 연구에서는 폭렬을 억제하기 위한 내화공법으로 고온 노출에 따른 섬유혼입콘크리트의 온도전이 특성에 대한 실험적 연구를 수행하였다. 온도전이 특성 실험은 200×200×200mm 크기의 큐브 형태의 시험체에 0.6, 0.8, 1.0kg/m3의 섬유를 혼입하여 시험체를 제작하였다. 섬유혼입콘크리트 내부온도를 측정하기 위하여 표면에서부터 20mm 간격으로 100mm까지 총 6개의 K타입 열전 대를 설치하였고, 전기 내화로를 사용하여 RWS 화재곡선을 모사하여 시험체를 가열하였다. 실험결과, 섬유를 혼입한 콘크리트는 섬유 를 혼입하지 않은 Control 변수에 비해 내부온도가 낮아지는 경향을 보였다. 이는 고온에서 내화섬유가 용융되면서 콘크리트 내부의 수증기압을 감소시켜 효과적으로 억제된 것으로 보인다. 특히 내화섬유 0.8kg/m3을 혼입한 경우 60mm 이상에서 효과적으로 콘크리트 내부 온도 상승을 억제한 것으로 나타났으며, 폭렬에 의한 구조적 손상을 방지하기 위한 적정 수준의 내화섬유 혼입량은 필요할 것으 로 판단된다. 그러나 많은 양의 섬유 혼입은 고온에 따른 섬유 용융으로 인해 내부에 다량의 공극이 형성되어 폭렬 억제에는 효과적 일 수 있으나, 다량으로 형성된 공극에 따른 온도 확산이 더 빠르게 진행되어 적절한 피복두께 확보가 필요할 것으로 판단된다. 따라 서 도로터널 내화 지침(국토교통부, 2021)의 콘크리트(380℃) 및 철근(250℃)의 한계온도 이내를 만족하기 위해서는 피복두께는 최소 100mm 이상을 확보해야 할 것으로 판단된다. 이는 터널 구조물의 내화성능을 개선하기 위한 기준을 제시하며, 향후 도로터널의 안전 성을 강화하기 위해 섬유혼입량과 철근 피복두께 간의 상관관계에 대한 추가적인 실험 및 해석적 검토가 필요할 것으로 판단된다.
Outdoor storage fires have a significant impact on the surrounding environment, including adjacent storage facilities and buildings. Therefore, it is essential to review and manage the fire impact to minimize damage to human life and property on the outdoor storage fires. In this study, the heat release rate and radiant heat flux were simulated according to the fire time, wind veolcity, and presence or absence of water spray equipment in an outdoor storage facility fire, and the fire impact was analyzed. The outdoor storage was designed to simulate two scenarios on the outdoor storage fires containing gasoline, and FDS was used for fire simulation. As a results, when the water spray facility was not operating and the wind velocity was 5 m/s, the maximum radiant heat flux was 24.80 kW/m2, which exceeded the limit radiant heat flux of 20 kW/m2. When the water spray facility was operating and the wind veolcity was 10 m/s, the maximum radiant heat flux was 18.77 kW/m2, which did not exceed the limit radiant heat flux, indicating that the fire impact on adjacent storage facilities was relatively small.