지형적인 이질성이 심한 강원도, 경상북도에 집중되고 있는 대형 산불을 관리하기 위해서는 위성 영상을 활용하여 효율적이고 신속한 피해 평가를 통한 의사 결정 과정이 필수적이다. 이에 본 연구는 2022년 3월 5일에 강원도 강릉 및 동해에서 발화하여 3월 8일 19시경 진화된 대형 산불을 대상으로, dNBR을 활용한 산불 심각도 산정과 등급에 영향을 미치는 환경요인을 도출하고자 하였다. 환경요인으로는 식생 또는 연료 유형을 대표하는 정규식생지수, 수종을 구분한 임상도, 수분함양을 나타내는 정규수분지수, 지형과 관련해서는 DEM 등을 수치화한 후 산불 심각도와의 상관 관계를 분석하였다. 산불 심각도는 산불 피해 없음(Unbured)이 52.4%로 가장 넓었고, 심각도 낮음 42.9%, 심각도 보통-낮음 4.3%, 심각도 보통-높음 0.4% 순이었다. 환경요인의 경우 dNDVI, dNDWI와는 음의 상관관계를, 경사도와 는 양의 상관관계를 나타내었다. 식생과 관련해서는 산불 심각도에 영향을 미치는 것으로 분석된 dNDVI, dNDWI, 경사도 모두에서 침엽수, 활엽수, 기타의 집단간 차이가 p-value < 2.2e-16로 유의미한 것으로 분석되었다. 특히, 침엽수 와 활엽수의 차이가 명확하였는데, 강원도 지역에서 우점종인 소나무를 비롯하여 잣나무, 리기다소나무, 곰솔 등의 산불 심각도가 높아 침엽수가 활엽수에 비해 피해를 받는 것이 확인되었다.
In this paper, as there are many cases of fires occurring due to the failure or inoperability of the thermostat of electronic products, the purpose is to test and analyze the risks and probabilities through fire cases and reproduction experiments, and suggest countermeasures. Among electronic products, water purifiers are composed of a refrigerant system with a compressor to make cold water, a heating device to make hot water, and an electric device used as an energy source. Due to the nature of the water purifier manufacturing, these devices are subject to a lot of moisture and dust. etc. exist in large quantities and use electrical energy, so there is a possibility of fire due to short circuit in the wire, electrical abnormal overheating (tracking phenomenon) in the thermostat, electronic board, starting relay, etc., and overheating of the heating device (Band Heater). there is. Therefore, in order to prevent fires from these devices, a system to remove foreign substances inside the water purifier is necessary, the use of heat-resistant (fire-resistant) wires for electrical devices is essential, and the use of non-combustible materials (semi-combustible materials) for each part is necessary to prevent fire. The risk must be eliminated through prevention and combustion expansion prevention devices.
In recent years the tunnel construction is increasing worldwide because of development of science and technology and increasing of transportation demand. Tunnels are complex structures normally rectangular cross section or semicircular and constructed to connect between different sections of roads. Because of the importance, the construction and extension of road tunnels are also continuously increasing along with the development. According to data from the Korea Expressway Corporation, the number of road tunnels, which was 1,332 in 2010, increased rapidly by about 2.1 times over 10 years to a total of 2,742 in 2020. The extension of road tunnels is also on the trend of increasing, with a total of 945 km in 2010 reaching 2,157 km in 2020. The benefits of a double-deck tunnel are emphasized, particularly in terms of construction cost and convenience. This tunnel design incorporates a central slab, dividing the tunnel into upper and lower spaces. The versatility of a double-decker tunnel is evident in its ability to accommodate various uses for both levels. For instance, the upper level can function as vehicle roads, while the lower level can be designated for train tracks. In this study, the effect of RWS and modified hydrocarbon fire curve was applied to the concrete tunnel bracket through simulation to analyze the temperature after the fire occurrence.
The seismic separation joint is an important device that absorbs vibration displacement from earthquake shock and protects fire extinguishing pipes and various utility pipes. In this study, the mechanical behavior occurring in U-typed and V-typed seismic separation joint was analyzed according to the length of the bellows, the length of the elbow straight pipe, and the open angle. As a result, as the length of the bellows increased, the stress and natural frequency decreased. In addition, as the length of the elbow straight pipe increased, the stress tended to decrease in the case of forced displacement in the vertical direction. As the open angle increased, the stress in the case of forced displacement in the left and right directions increased.
내화 구조물에서는 환기 계수, 재료 탄성 계수, 항복 강도, 열팽창 계수, 외력 및 화재 위치에서 불확실성이 관찰된다. 환기 불확실성 은 화재 온도에 영향을 미치고, 이는 다시 구조물 온도에 영향을 미친다. 이러한 온도는 재료 특성과 함께 불확실한 구조적 응답으로 이어지고 있다. 화재 시 구조적 비선형 거동으로 인해 몬테카를로 시뮬레이션을 사용하여 화재 취약성을 계산하는데, 이는 시간이 많 이 소요된다. 따라서 머신러닝 알고리즘을 활용해 화재 취약성 분석을 예측함으로써 효율성을 높이고 정확성을 확보하려는 연구가 진행되고 있다. 이 연구에서는 화재 크기, 위치, 구조 재료 특성의 불확실성을 고려하여 철골 모멘트 골조 건물의 화재 취약성을 예측 했다. 화재 시 비선형 구조 거동 결과를 기반으로 한 취약성 곡선은 로그 정규 분포를 따른다. 마지막으로 제안한 방법이 화재 취약성 을 정확하고 효율적으로 예측할 수 있음을 보여주었다.
Solenopsis invicta, known as the red imported fire ant, is an insect native to South America. This species was unintentionally introduced into Australia, New Zealand, several Asian countries, Caribbean countries, and the United States. It shows a high survival rate and settlement potential in human-habitable and non-living areas such as tropical rainforests, disturbed areas, deserts, grasslands, and roads. In Korea, invasions of red fire ants have been reported every year since 2017, and two invasions were discovered in 2023. Quarantine agency analyzing the haplotype and colony social type of S. invicta for surveillance and control. Population genetic analysis using Microsatellite Alleleic data of 66 loci to trace the origin of the invasion. Through research cooperation with the United States Department of Agriculture (USDA), we have received samples and expanded our genetic information database. This study analyzed genetic differences between 15 invasive populations and 44 reference groups. As a result of microsatellite analysis, the domestic invasive population showed a genetic structure similar to those in Guangzhou, China, and Florida, USA.
This study attempted to analyze the comparative advantage in terms of disaster safety costs in verifying the effectiveness and economic feasibility of the high-performance water-bulwark system in the pole tunnel, which was recently promoted as a part of the acceleration of vehicles. The tunnel to be analyzed was divided into a short tunnel(Anyang, Cheonggye) and a long tunnel(Suraksan, Sapaesan). As a result, it was analyzed that 25% of the improvement effect would occur if one lane was secured by applying the Water-Bulwark System. It was analyzed that this is because the time value cost, which accounts for a large proportion of the traffic congestion cost of short tunnels and pole tunnels, differs depending on the congestion time and traffic volume, not the length of the tunnel.
South Korea has been storing UNF in spent fuel pool dry storage facility within Nuclear Power Plants. The dry storage facility of used nuclear fuel (UNF) is essential to sustain safety and sustain stable operation of a nuclear power plant. Most abroad countries have attempted to develop a variety of dry storage facility for used nuclear fuel in order to retain the safe restoration. Many studies have been conducting to safety evaluation for the dry storage facility. However, there is not a ventilation evaluation in the wake of fire event that could influence of the thermal effect on the dry storage facility, even though it will likely to occur fire events such as wildfire, air craft crash. In practice, it happened to catastrophic disaster due to the wild fire adjacent to ul-jin mountain. Also, it happened to fire accident near to the Japonia NPP in Ukraine territory caused of military air plane missile. It has not mostly been studied on the ventilation evaluation considered to thermal safety in the dry storage facility excepted for some researches. It could need the mechanical ventilation systems such as HVAC system in the dry storage system, so that thermal effect can be reduced. In this study, we conducted to the ventilation control modelling by using fire modelling tool (Fire Dynamic Simulator v.6.7). The ventilation scenarios made up for 3 case that can compare flowrate variation with ventilation control. As a result of modelling, there is no differentiation between ventilation control using performance curve with not using performance curve even though the pressure fluctuation would be increased, compared with the case of considering performance curve. Second, it evaluated that the mode for fraction control would occur to pressure rise in the state of controlling the ventilation system flowrate. However, sensitivity of flowrate control was more decreased below less than 5 seconds. Third, in the case of on/off control system revealed more higher resolution than other cases caused by flowrate variation. These results could be considered as the design guidelines for the development dry storage facility to improve the thermal performance that can reduce thermal risk. Furthermore, the study results would expect HVAC system installed in dry storage to help automatic ventilation control relevant to dry storage safety increased.
이 논문은 정적 재하상태에 있는 무피복 강합성보와 내화피복을 적용한 강합성보를 대상으로 화재 시 내부 온도 및 수직처짐에 대 한 내화피복의 영향을 평가한 결과를 제시한다. 열응력해석을 위한 화재하중으로는 American Society for Testing and Materials E119 의 표준화재곡선을 사용했으며, 강재거더 표면에 부착하는 내화재료의 방화효과를 구현하기 위해 외기에서 강합성보로 전달되는 열 의 전달계수를 감소시켰다. 실규모 무피복 강합성보에 대한 구조화재실험에서 내부 온도분포와 수직처짐을 측정하였고 실험 결과와 의 비교를 통해 비선형 구조화재해석 결과의 타당성을 검증하였다. 내화피복이 적용된 강합성보의 구조화재해석 결과로부터 강재거 더 표면에 내화재를 적용할 경우 동일 화재 조건에서 무피복 강합성보에 비해 내부 온도와 수직처짐이 감소함을 알 수 있었다. 또한 열 전달계수의 변화에 따른 열응력 응답으로부터 화재 시 강합성보의 온도 및 구조거동에 대한 내화피복의 영향을 제시하였다.
The purpose of this study is to compare and analyze the flame retardant performance of Japanese cypress(Chamaecyparis obtusa) plywood, commonly used in indoor decoration, furniture, and tableware, by treating it with three different fire retardants with different primary ingredients. The experiment was conducted in compliance with Article 31, Paragraph 2 of the Enforcement Decree of the Fire Facilities Installation and Management Act and Articles 4 and 7-2 of the Flame Retardant Performance Standards. After flame time, after glow time, char length, and char area were measured. As a result, first, after flame time was measured at 0 seconds regardless of whether the flame retardant treatment was applied. Second, after glow time was relatively long, measuring 22.7 seconds without treatment, which is likely due to the weak fire resistance and high concentration of carbon monoxide generated by the chemical characteristics of the Japanese cypress itself. Third, it was confirmed that the effects of the primary ingredient, phosphorus, in the flame retardant treatment varied depending on the technological development of the manufacturers of the same species of Japanese cypress plywood. In the future, it is expected that the results of this study will provide fundamental data to select flame retardant treatments that show high flame retardant performance according to the botanical characteristics of the wood.
Forest fires in Korea usually start in the fall and occur every year until spring. Most wildfires are human resources that combine topographical characteristics and carelessness, and failure to respond in the initial stage and lack of cleanup are spreading to large-scale wildfires. In order to prevent these wildfires, active cooperation from the public is essential. As can be seen from recent wildfires, the attention of the public is needed above all else because large-scale wildfires in Korea are occurring due to the people's negligence. If a wildfire spreads and becomes large, it causes damage to life and property, and the damage is irreversible. In this study, various methods were used to prevent forest fires and improve initial suppression ability. In order to minimize damage, the model analyzed by the 119 Special Rescue Team in Gangwon, Chungcheong and nearby forest fires was analyzed on the combustion progress and wind direction by time period. The propagation speed by the wind direction was simulated. Until now, most of the wildfires have been extinguished by firefighting, but I hope that the Forest Service will take the lead and maintain coordination with related organizations.
Nuclear power plants decommissioning is planned to be started in middle of the 2020. It is necessary to develop safety evaluation and verification technology during decommissioning to ensure the safety of security monitoring measures and maintenance measures, appropriate emergency plans and preparations for decommissioning, and the use of proven engineering when establishing decommissioning plan. For this purpose, a nuclear power plant decommissioning plan is prepared in several stages before decommissioning. When a lifetime of a nuclear power plant has reached, it needs to be decommissioned and therefore operator company should submit decommissioning plans to the National Safety and Security Commission. And safety analysis should be included in this document and it is explained in chapter 6. According to the NSSC Notice No. 2021-10, it is largely divided into principles and standards, exposure scenarios, dose assessment, residual radioactivity, abnormal events, and risk analysis. When unexpected radiological accident is happened, both public and occupational dose analysis should be conducted. However, research on the former can be found easily on the other hands, research on the latter is not active. In this paper, method of choosing scenarios of accidents during the decommissioning the nuclear power plants is briefly introduced. Accidents during nuclear power plants decommissioning cases in USA is chosen and its risk is evaluated by using risk matrix and ranked by AHP method. During the decommissioning phases, varieties of radioactive waste is expected to be generated such as contaminated concrete and metal. On the other hand, Dry Active Waste (DAW) is generated and its amount is and its amount is 7,353 drums. Characteristic of DAW is highly flammable compared to concrete or metal. Moreover, depending on method of radioactive waste conditioning and type of radioactive nuclides, release rate of the nuclides varies. Thus this type of radioactive waste is critical to fire accidents and such accident can occur extra dose exposure which exceeds the guideline of the regulatory body to workers. Therefore, in this paper, occupational dose exposure during the fire accident is conducted.