Due to climate change and the expansion of cultivation areas through the use of reclaimed land, changes in the selection of Italian ryegrass (Lolium multiflorum L.) varieties are anticipated. This study was conducted to compare the growth characteristics before overwintering, productivity, and feed value of eight Italian ryegrass varieties with different maturing stages under the same cultivation conditions. The variety ‘Lm4ho’, a medium-maturing type, showed superior growth characteristics before overwintering, including plant height, leaf length, and leaf width. The heading date was advanced in all varieties, with a greater degree of advancement observed in varieties with earlier heading dates. When harvested at the heading stage of the early-maturing types, the dry matter yield of the medium-maturing types was not significantly different from that of the early-maturing types. However, when harvested at the heading stage of the medium-maturing types, the dry matter yield was higher than that of the early-maturing types. Specifically, ‘Lm4ho’ produced 2,518 kg/ha more than ‘Kowinearly’. The late-maturing variety IR901 and the medium-maturing varieties ‘Lm4ho’ and ‘Kowinmaster’ showed statistically superior dry matter yields. In terms of forage value, including crude protein (CP), total digestible nutrients (TDN), and relative feed value (RFV), the medium- and late-maturing types outperformed the early-maturing types. Notably, ‘Lm4ho’, ‘IR 901’, and ‘Hwasan 104’ were evaluated as suitable varieties for high-quality forage production. These results suggest that medium-maturing varieties may be suitable for double cropping in the central regions due to climate change. We propose that future breeding of Italian ryegrass should expand from focusing on cold tolerance and early-maturing varieties to include mediumand late-maturing varieties that consider both productivity and quality.
This study was conducted at the National Institute of Animal Science (NIAS) from 2010 to 2017 to develop a late-maturing variety with high productivity for cultivation in the southern region of South Korea. The new variety of Italian ryegrass, ‘IR901’, was a late-maturing variety, and its heading date was 22 May, 17 days later than that of the control variety ‘Kowinearly’. ‘IR901’ had a flag leaf width of 11.2 mm, flag leaf length of 31.8 cm, and plant length of 103 cm on its heading date. The combined average dry matter yield of ‘IR901’ in all three adaptability evaluation regions (Cheonan, Pyeongchang and Haenam) was 7,747 kg/ha, which was similar to that of the ‘Kowinearly’ variety (7,734 kg/ ha). However, the average dry matter yield over three years in Cheonan and Pyeongchang was 82% and 96%, respectively, compared to that of the control, which was most likely because of the poor cold tolerance of ‘IR901’. By contrast, in Haenam, in the southern region, the average dry matter yield of ‘IR901’ was 19% higher than that of the ‘Kowinearly’ variety. The proportions of crude protein (CP), total digestible nutrients (TDN), acid detergent fiber (ADF), and neutral detergent fiber (NDF) in ‘IR901’ were 8.6%, 59.7%, 36.9%, and 54.8%, respectively; the proportions were 0.2% lower, the same, the same, and 2.5% lower than those in the ‘Kowinearly’ variety. The determined in vitro dry matter digestibility (IVDMD) of ‘IR901’ was 72.2% higher than that of ‘Kowinearly’ (67.2). In general, of the two varieties, the forage quality of ‘IR901’ was marginally superior to that of ‘Kowinearly’.
본 연구는 이탈리안 라이그라스를 벼 입모중 파종 후 벼 수확시기에 따른 이탈리안 라이그라스 극조생종 품종 ‘그린팜’ 의 생육특성 및 생산성을 평가하기 위해 중부지역에 위치한 천안에서 2011–2012, 2012–2013 및 2013–2014까지 3년간 수행하였다. 1. 국내육성 이탈리안 라이그라스 극조생종 ‘그린팜’을 3년 간 9월 하순에 파종 후 10일(처리 1), 20일(처리2) 및 30일(처리 3) 간격으로 3회에 나누어 벼를 수확해서 재배하였을 때, 벼 수확시기가 늦어질수록 월동 전 분얼수, 초장, 월동율 및 건물수량은 감소하는 것으로 나타났다. 2. 월동 전 분얼수는 처리 1에 비해 처리 2 및 3의 평균이 각각 32% 및 52% 감소하는 것으로 나타났다. 3. 벼 수확 지연에 따른 월동율의 경우 처리 1에 비해 처리 2 및 3은 두 처리구 모두 평균 8% 감소하였으며, 건물수량은 각각 평균 32% 및 52% 감소하였다. 4. 벼 입모중 이탈리안 라이그라스 파종 재배시험에서 출수기는 매년 다르게 나타났으며, 봄철 이탈리안 라이그라스 수확 시 초장의 차이는 유의성이 있는 차이를 보이지 않았다. 5. 논에서 입모중 파종으로 극종생 이탈리안 라이그라스 품종 그린팜을 재배할 때는 파종 후 가능한 한 빨리 벼를 수확하여 생산성을 높이는 것이 방법임을 시사한다.
Intercropping cereals with legumes is known to improve forage production and crude protein yield. Sorghum × sudangrass hybrids (SSH) have excellent dry matter content and high cultivation temperatures. In this study, we investigated the growth characteristics, forage productivity, and feed value of intercropping SSH with different legumes in rice paddy fields. We used five treatments in this study SSH monocropping and four intercropping treatments of SSH with, lablab, cowpea, sesbania, and two cultivars of soybean (Chookdu 1 and 2). SSH plant height was not significantly different between the monocropping and intercropping treatments. However, the plant heights of lablab, cowpea, and sesbania were significantly higher than those of the two soybean cultivars. The total dry matter yield (kg/ha) was significantly higher in SSH monocropping than in intercropping; among the intercropping treatments, the one with SSH and Chookdu 2 yielded the highest total dry matter yield. The SSH feed value was significantly different between the monocropping and intercropping treatments, although there were no differences between the intercropping treatments. Among the intercropped legumes, lablab showed the highest neutral detergent fiber and acid detergent fiber contents, and cowpea had the highest crude protein content. These results reveal that intercropping SSH with legumes in paddy fields could be a promising cultivation technique to maintain stable forage productivity.
The optimal determination of seeding rate is critical to minimizing uncertainties about the large variations observed in forage quality and productivity when alfalfa is cultivated under different geographical areas and growing conditions. The objective of this investigation was to provide information about the proper seeding rate according to harvest timing for alfalfa cultivation in the Northern regions of Korea. Alfalfa was sown in September 2018 at a seeding rate of 20, 30 or 40 kg/ha and harvested four times in 2019: May 3, July 2, September 11, and October 13. Regardless of seeding rate, alfalfa plant height was longest at the third harvest (113 cm) and the shortest in the last annual harvest (43.8 cm). However, seeding rate had no effect on alfalfa plant height at any harvest. Forage relative feed value was increased in the first cutting but decreased in the third cuttings as seeding rate increased. However, seeding rate had slight effect on alfalfa forage quality components at the second and fourth cuttings. Total annual DM and crude protein production (in 4 harvests) was greater at higher seeding rates. Plots seeded at a rate of 40 kg/ha produced on average 1,257 and 2,620 kg/ha more forage (DM basis) than those seeded at a rate of 30 or 20 kg/ha, respectively. Forage DM production at the first, second, third, and fourth harvests accounted for 36.1, 24.0, 27.1, and 12.8 % of total annual DM production, respectively. Overall, small differences were seen when alfalfa seeding rate was different but maximum forage DM production (in four harvests) was detected when seeding rate was 40 kg/ha. These data could be useful to the alfalfa growers by allowing them to make more accurate trade-offs between seed price and the expected magnitude of forage yield gains in order to select the best seeding rate.
Cutting management has been identified as a critical factor in the alfalfa production systems because it has a significant impact on maximizing yield and maintaining the forage quality. The objective of this experiment was to determine the proper cutting height according to harvesting time for optimizing nutrient yield and forage nutritive quality of alfalfa grown in alpine regions of Korea. Alfalfa was sown at a seeding rate of 30 kg/ha in August 2018 and harvested at four cuttings in 2019 (3 May, 2 July, 11 September, and 13 October). Cutting heights were adjusted at 5, 15, and 25 cm above the soil surface. Alfalfa plant was tallest at the third cutting (109 cm), which was on average 35 cm taller than the first or second cutting. Relative feed value (RFV) remained unaffected by cutting height at the first harvest, but increased consistently in subsequent harvests as cutting height increased. Alfalfa collected at the first and fourth cuttings had the highest RFV (mean 152), which was on average 8 and 67 units higher than the second and third harvests, respectively. At each harvest, in vitro dry matter digestibility was highest in alfalfa cut at a 25-cm height. Dry matter (DM) production at each cutting height was highest in the first cutting, accounting for on average 36-37% of total annual DM production, and lowest in the fourth harvest, accounting for about 11-13% of the total DM yield. The total dry matter production (in four harvests) was 4,218 kg/ha higher when alfalfa was subjected to a cutting height of 5 cm rather than 25 cm. Cutting height had no effect on total crude protein yield, but from the first to fourth cutting, the protein yield followed a decreasing trend. Finally, there were visible declines in forage nutritive quality when alfalfa was cut at a shorter height. However, the magnitude of difference in total forage yield may outweigh the slight decline in forage quality when alfalfa is cut at a lower height. The findings of this study could help the alfalfa growers make better harvest management decisions.
The purpose of this study was to assess the forage productivity and nutritive value of kenaf at different fertilizer application amounts and various stages of maturity. The experiment was conducted from May to September 2020, the amount of 80 kg of kenaf seed/ha was supplied with different types and amounts of nitrogen fertilizer and the plants were harvested at 10-day intervals from different harvesting dates (24th August and 3rd, 13th, 23rd September). According to the different fertilizer types and application amounts, the highest kenaf height was recorded in the inorganic fertilizer amounts of 200 and 250 kg N/ha and the fresh and DM yield were significantly improved in the inorganic nitrogen amount of 250 kg N/ha. The highest CP and TDN content in the leaf was achieved in the inorganic fertilizer amounts of 150 and 200 kg N/ha, respectively; and the highest TDN content in the stem was also found in the inorganic fertilizer amount of 200 kg N/ha. According to the different harvesting dates, the highest DM ratio was found in the harvesting date of 13th September, the leaf ratio increased with advanced maturity, whereas the stem ratio decreased significantly and the highest DM yield of kenaf was recorded in the harvesting dates of 13th and 23rd September. Besides, the highest CP, CF, CA, ADF, NDF and TDN content in the leaf as influenced by different harvesting dates was 15.4, 31.8, 10.2, 22.1, 34.7 and 76.5%, respectively, and the CP, CA, ADF and TDN in stem decreased significantly with advanced maturity of kenaf. In conclusion, the optimal fertilizer amounts and the appropriate harvesting dates for a high forage yield and high-quality kenaf as livestock feed were the inorganic fertilizer application amounts of 200-250 kg N/ha and from 13th and 23rd September, respectively.
This study was conducted to investigate the effects of species and varieties of summer forage crops on growth characteristics and productivity in Sihwa reclaimed land. The summer forage crops used in the trial were silage corn, sorghum×sudangrass hybrid(SSH), and proso millet. For each forage species, Gwangpyeongok(GPO), P15453, P1952 and P2088 were used for silage corn, and 877F, Green star, Honey chew, and Turbo gold cultivars were used for SSH. For proso millet, Ibaekchal, Geumsilchal and Manhongchal developed by the National Institute of Crop Science were used. Silage corn and SSH were sown on May 21, 2019 and proso millet on June 4, and harvested on September 2. There was no significant difference in plant and ear height of silage corn among varieties. P1543 was the highest and P2088 was the lowest in yield of silage corn, but there was no significant difference among treatments. Among the SSH, the plant height of 877F was the highest and Turbo gold variety had the smallest (p<0.05). As for the dry matter(DM) yields, 877F had the highest at 3,862 kg/ha and Green star had the lowest at 2,669 kg/ha (p<0.05). The fresh matter yield of proso millet was 15,778 kg/ha, which was higher than that of corn or SSH, The average dry matter yield was 4,780 kg/ha, and Ibaekchal variety had the highest DM yield compared to other varieties (p<0.05). P2088 had the highest TDN content and GPO was the lowest (p<0.05). As for the SSH, the TDN content of Green star and Honey chew varieties was significantly higher, and the RFV value was the lowest in Turbo gold. The average crude protein content of proso millet was 7.03%, and the highest TDN and RFV values were 64.36% and 106 in Geumsilchal. In the experiment of the germination rate of summer forage crops according to salt concentration, silage corn showed a germination rate of 83.1% even at 0.4% salinity. In particular, P2088 and P1921 varieties had more than 80% germination rate even at 0.6% salt concentration. As for the SSH, the germination rate of 877F was 93.3% even at 0.8% salinity, and 88.3% with Honey chew, indicating higher resistance to salt concentration compared to other varieties. Proso millet showed a high germination rate of 84.0 to 88.7% even at a salt concentration of 0.6%. Considering the above results, proso millet was recommended as the most suitable forage crop species in the Sihwa reclaimed land with high salt concentration, and the Ibaekchal variety is recommended as a suitable forage crop due to its high yield.
This study was conducted to determine the effect of horse manure compost application on Italian ryegrass (IRG) yield and volcanic ash soil characteristics. Because the number of horses in Korea is growing, the amount of horse manure is growing. Jeju island, where about 55 % of the horses live, is composed of volcanic ash soil. This study was conducted for about 7 months. Sowing was conducted on October 2019. Harvesting was conducted at heading stage(2020.5.). Five treatments were established based on the horse manure compost composition. These were 100 % chemical fertilizer (CF), the combination of 50 % horse manure and 50 % chemical fertilizer (combination), horse manure with 50 % nitrogen (HM 50 %), horse manure with 100 % nitrogen (HM 100 %), and horse manure with 150 % nitrogen (HM 150 %). The plant height and dry matter yield were investigated to determine the forage yield and the soil characteristics of pH, total nitrogen, available phosphate, and organic matter were analyzed. The plant heights in the CF, combination, and HM 150 % treatments were 147.8 cm, 144.3 cm, and 147.1 cm respectively (Table 2). Dry matter yield in the CF treatment was about 23,807 kg/ha, which tended to be the highest dry matter yield. HM 150 % and the combination treatment were about 18,804 and 18,455 kg/ha, respectively, which tended to be the highest dry matter yield of the treatments amended with horse manure compost. The dry matter yield of the HM 100 % and HM 50 % treatments was about 15,801 kg/ha and 14,446 kg/ha, respectively (Table 2). The pH of the surface soil tended to increase after the experiment. The soil pH of the HM 150 % treatment was significantly higher than the soil pH of the other treatments. The pH was affected by the amount of horse manure compost, with a pH of 8.1. The available phosphate in the treatments in which horse manure compost was added was higher than the available phosphate in the CF treatment. And the available phosphate in the HM 150 % treatment was significantly higher than the available phosphate in the other treatments (p < 0.05)(Table 3). These results suggest that 50 % horse manure should be applied to IRG as the basal fertilizer and the remaining 50 % should be chemical fertilizer as the top fertilizer. This can provide the proper IRG dry matter yield with less effect on volcanic ash soil.
In order to establish optimal double cropping system for getting the maximum annual productivity, we investigated annual fresh and dry yields of winter forage crops (WFC), Italian ryegrass (IRG) ‘Kowinearly’, triticale ‘Joseong’ and summer forage crop (SFC), ‘Jonong’ and ‘Jowoo’ as whole crop silage rice in the paddy field of Yeongseo of Gangwon Province. The double cropping of each crops was applied with 2 standard cultivation method of WFC and SFC from 2018 to 2020. For the WFC, the average percentage of dry matter (29.6%) of IRG ‘Kowinearly’ was lower than that (35.5%) of triticale ‘Joseong’. The average fresh matter yield of IRG ‘Kowinearly’ was 2,662kg/10a that there was no significant difference from the 2,836kg/10a of triticale ‘Joseong’. The average dry matter yield (996kg/10a) of triticale ‘Joseong’ was more than that (696kg/10a) of IRG ‘Kowinearly’. For the summer forage crops, the average percentage of dry matter of whole crop silage rice, ‘Jonong’ was 34.5% that there was no significant difference from the 35.0% of ‘Jowoo’. The average fresh matter yield (5,367kg/10a) of ‘Jowoo’ was more than that (3,966kg/10a) of ‘Jonong’. And the average dry matter yield (1,936kg/10a) of ‘Jowoo’ was more than that (1,433kg/10a) of ‘Jonong’. The total maximum dry matter yield was 2,982kg/10a with the combination of the WFC triticale, ‘Joseong’ and the SFC whole crop silage rice, ‘Jowoo’. In conclusion, the combination of crops that can obtain the maximum yield of high quality forage for double cropping is sowing the WFC triticale, ‘Joseong’ in mid-October, harvesting ‘Joseong’ around the end of May and then SFC whole crop silage rice, ‘Jowoo’, to be transplanted in early June.
Sorghum×sudangrass hybrid (Sorghum bicolor (L.) Moench, SSH) is one of the most important summer forage crop and it is widely used for silage in Korea. Agriculture is highly dependent on the climate condition and experiencing significant loss of productivity due to climate change. This study was conducted to investigate the correlation analysis between productivity of forage SSH and climatic factors in Central Northern region of South Korea for 3 years (2017 to 2019). Plant height and dry matter yield of SSH were significantly higher in Gyeonggi-do than Ganwon-do. The productivity of SSH is more closely related with temperature than other climatic factors. Maximum temperature and Growing degree days in May and June showed a positive correlation. However, correlation between production of SSH and precipitation was not clear in this study, but rainy days showed a negative correlation (0.42). In conclusion, temperature is most important climatic factor to the maintenance of plant yield.
To investigate the suitable growing area for Italian ryegrass (cv. Kowinearly and cv. Green-Call), we survey the different effects of climatic conditions on plant growth in the east (hereafter termed Yeongdong) and west (hereafter termed Yeongseo) of the passes in Gangwon Province. The Italian ryegrass was grown in Gangneung of Yeongdong and Wonju and Chuncheon of Yeongseo. The plants showed growth differences depending on the cultivated regions between before and after wintering. The Italian ryegrass for pre-wintering showed the relatively long length of plant height in Wonju. While, we observed the relatively tall plants for growing- and harvestingperiod after wintering in Gangneung. The increased plant height in Gangneung was closely related to all climatic conditions for the growing period and mean- and lowest-temperature for the harvesting period, respectively. The amount of dry matter was 7,490 kg/ha for Kowinearly and 6,490 kg/ha for Green-Call in Gangneung, which has a higher yield than Chuncheon and Wonju. The relative yield index of dry matter was 77% (Kowinearly) and 78% (Green-Call) in Chuncheon and 84% (Kowinearly) and 71% (Green-Call) in Wonju compared to Gangneung as the standard region. Thus, we suggest that Chuncheon and Wonju are the possible areas for cultivation of Italian ryegrass, considering that Gangneung was the optimum growing area in Gangwon Province.
This study was conducted at the National Institute of Animal Science from 2010 to 2017. As a variety that is sufficiently productive in the southern regions to replace imported varieties and sufficiently cold-resistant to be cultivated in the central-northern regions, "IR605" was developed and submitted to the Korea Seed & Variety Service in an application for protection. The novel Italian ryegrass variety "IR605" is a diploid with green leaves, a semi-erect growth habit before wintering, and an erect growth habit in the spring. "IR605" was a medium maturing variety with a heading date of around May 15th. "IR605" had a flag leaf width of 9.9 mm, flag leaf length of 26.7 cm, and plant length on the heading date of 100 cm, which was approximately 5 cm longer than "Kowinearly." The stem thickness and ear length of "IR605" are 0.08 mm thicker and 0.5 cm longer than those of "Kowinearly", respectively. The cold-resistance of "IR605" was weaker than that of "Kowinearly", but strong enough to be cultivated in Pyeongchang, Gangwon province. The dry matter yield of "IR605" (9,308 kg/hectare) was 20% higher than that of "Kowinearly", which was further pronounced in the southern region of Haenam, where there was a 52% increased (p < 0.05). The in vitro dry matter digestibility of "IR605" was 68.4% at which was slightly higher than that of "Kowinearly", The total digestible nutrients was 58.5%, which was slightly lower than "Kowinearly". Overall, the feed quality characteristics of "IR605" were similar to those of "Kowinearly".
These experiments were to investigate the variations of rye on forage quality, productivity and β-carotene concentration affected by maturity in Pyeongchang region. Limited information are available about how forage quality and β-carotene content are affected by various factors. Samples were collected from rye harvested every 5 days, from April 25 to May 31 (April 25, April 30, May 4, May 9, May 15, May 21, May 25 and May 31). Dry matter (DM) content, plant height, DM yield and total digestible nutrient (TDN) yield increased continuously with the progressed maturity. However, crude protein (CP) content, in vitro dry matter digestibility (IVDMD) and relative feed value (RFV) decreased markedly with the delay of harvesting, while TDN content decreased from April 25 till May 15, then followed by a stable fluctuation. Conversely, acid detergent fiber (ADF) and neutral detergent fiber (NDF) value increased and then fluctuated slightly after blooming stage. For quality of plant parts, stem contained the lowest CP content and RFV value, and the highest ADF and NDF contents compared with other parts, while the grain showed the higher CP, IVDMD, RFV and lower fiber contents than others. With the plant matured, leaf proportion decreased while stem and grain proportion increased, and feed value of all the three parts decreased till blooming stage and followed by a stable phase. β-carotene concentration showed its highest on jointing stage, and then fell down sharply on the sequential stages. In conclusion, harvest around May 15 (blooming) is proper for forage rye if directly consumed by livestock as green chop in Pyeongchang under the consideration of both nutritive yield and forage quality.
This experiment was conducted to a comparison of the productivity according to variety and forage quality by plant parts of imported silage corn (Zea mays, L) in Pyeongchang. The corns evaluated in this experiment were 8 varieties (P1184, P1151, P1194, P1543, P1345, P1429, P1443, and P2105) introduced from the United States, Pioneer Hybrid Co. The harvested corn was divided into 5 plant parts (leaf, stem, cob, husk, and grain), and the ratio of each part was calculated using dry weight and the feed value was analyzed. The emergence rate of corn was generally good except for the P1151 and P2105 varieties. The average tasseling date was July 24th and the silking date was July 27th, but the P2105 variety was late to July 28th and August 1st, and the remaining varieties were similar. P1345 was the highest (289 and 123 cm), and P1151 varieties were the lowest (267 and 101 cm) in the plant and ear height. Disease resistance was low in P1184, P1443 and P1429, and P1197 and P1345 were high. In the case of stover, the dry matter (DM) content was the lowest at 19.6% in the P1151 and the highest at 24.9% in the P1429. DM content of ear was the highest in the P2105 (55.5%), and P1184 (54.2%) and P1345 (54.3%) were also significantly higher (p<0.05). The DM yield of stover of P2105, P1429 and P1194 varieties was significantly higher (p<0.05), and ear yield of P2105, P1345 and P1443 was higher. The proportions of each part of plants (leaf, stem, cob, husk, and grain) divided by 5 was high, with 50-60% of the ear(grain+cob) ratio. The ratio of husk and cob was roughly similar, and the leaf and stem part showed a ratio of about 20%. The crude protein (CP) content was highest in leaf, followed by grain. The CP content of the stem was the lowest, and the husk was not significantly different among the varieties (p>0.05). The acid detergent fiber (ADF) content was similar to the rest parts except grain, but the leaf part tended to be lower, and other parts except the stem and leaf showed no significant difference between varieties (p>0.05). There was no significant difference in NDF (neutral detergent fiber) content in husk, but there was a difference between varieties in other parts (p<0.05). In addition, there was a special difference by plant parts for each variety, P2015 on the stem, P1197 on the leaf, P1151 on the cob, P1197 on the husk, and P1197 on the grains with high NDF content. IVDMD (in vitro dry matter digestibility) was not significantly different between stems and grains, but there was a difference between varieties in cobs and husks. According to the results, DM yield of P2105 variety was the best in the experiment, and the ratio of grain was excellent in P1543 and P1345. In addition, it was found that the feed value was higher in the leaves and grains, and the leaf and stem had higher feed values than husk or cob.
This study was conducted to compare the agronomic characteristics and productivity according to the species and varieties of winter forage crops in reclaimed land. Winter forage crops used in this study were developed in National Institute of Crop Science, RDA. Oats (‘Samhan’, ‘Jopung’, ‘Taehan’, ‘Dakyung’ and ‘Hi-early’), forage barley (‘Yeongyang’, ‘Yuyeon’, ‘Yujin’, ‘Dacheng’ and ‘Yeonho’), rye (‘Gogu’, ‘Jogreen’ and ‘Daegokgreen’) and triticale (‘Shinyoung’, ‘Saeyoung’, ‘Choyoung’, ‘Sinseong’, ‘Minpung’ and ‘Gwangyoung’) were planted in the reclaimed land of Sihwa district in Hwaseong, Gyeonggi-do in the autumn of 2018 and cultivated using each standard cultivation method, and harvested in May 2019(oat and rye: 8 May, barley and triticale: 20 May.) The emergency rate was the lowest in rye (84.4%), and forage barley, oat and triticale were in similar levels (92.8 to 98.8%). Triticale was the lowest (416 tiller/㎡) and oat was the highest (603 tiller/㎡) in tiller number. Rye was the earliest in the heading date (April 21), triticale was April 26, and oat and forage barley were in early May (May 2 and May 5). The plant height was the highest in rye (95.6 cm), and triticale and forage barley was similar (76.3 and 68.3cm) and oat was the lowest (54.2 cm). Dry matter(DM) content of rye was the highest in the average of 46.04% and the others were similar at 35.09∼37.54%. Productivity was different among species and varieties, with the highest dry matter yield of forage barley (4,344 kg/ha), oat was similar to barley, and rye and triticale were lowest. ‘Dakyoung’ and ‘Hi-early’ were higher in DM yield (4,283 and 5,490 kg/ha), and forage barley were higher in ‘Yeonho’, ‘Yujin’ and ‘Dacheng’ varieties (4,888, 5,433 and 5,582 kg/ha). Crude protein content of oat (6.58%) tended to be the highest, and TDN(total digectible nutrient) content (63.61%) was higher than other varieties. In the RFV(relative feed value), oats averaged 119, while the other three species averaged 92∼ 105. The weight of 1,000 grain was the highest in triticale (43.03 g) and the lowest in rye (31.61 g). In the evaluation of germination rate according to the salt concentration (salinity), the germination rate was maintained at about 80% from 0.2 to 0.4% salinity. The correlation coefficient between germination and salt concentration was high in oat and barley (-0.91 and -0.92) and lowest in rye (-0.66). In conclusion, forage barley and oats showed good productivity in reclaimed land. Adaptability is also different among varieties of forage crops. When growing forage crops in reclaimed land, the selection of highly adaptable species and varieties was recommended.
This study was conducted to establish spring sowing techniques in preparation for the impacts of climate change on sowing time and wintering rates of winter forage crops such as barley, oat and IRG. Oat showed the highest yield in 2017 which had relatively dry climate condition. And when sowing in late Febrnary 2017 yielding 9,408kg/ha were obtained, yielding 4,011kg/ha more than IRG's sown in the same period. In 2018 which had relatively wet climate condition, four barley species decreased in the production from the previous year. Oat also had decreased by 70% from 9,408kg/ha to 2,851kg/ha. On the other hand, IRG maintained the production in the mid-5,000kg/ha range. It was also found that IRG had the least variability due to external influences regardless of seeding period for 2 years. Mixed sowing with IRG and oat in 50:50 ratio was the highest dry matter, 6,584kg/ha, and IRG was 18.5% and Oat was 2.3 times higher than single planting.