공유 유기 골격체(covalent organic frameworks, COF)는 기능성을 정밀하게 설계하고 제어할 수 있는 결정성 다 공성 소재로서, 차세대 연료전지 멤브레인으로 주목받고 있다. 표준 양성자 교환막인 나피온(Nafion)은 높은 비용과 좁은 가 용 범위 등의 한계에 직면해 있다. 본 논문은 COF를 다양한 고분자 매트릭스에 도입하여 이러한 단점을 극복하기 위한 최신 연구 전략을 심도 있게 다룬다. 특히 양성자 교환막 연료전지(proton exchange membrane fuel cells, PEMFC), 음이온 교환막 연료전지(anion exchange membrane fuel cells, AEMFC), 그리고 고온(high-temperature) PEMFC (HT-PEMFC)용 COF 기반 복합막의 설계와 성능 특성에 집중한다. 다양한 COF 기능화 및 복합화 전략을 통해 이온 전도도, 기계적 강도 및 운전 안정 성을 향상시킨 주요 연구들을 비평적으로 논하며, 연료전지의 전반적인 효율 향상에 대한 COF의 잠재력을 조명한다.
Proton Exchange Membrane Fuel Cells (PEMFCs) are emerging as reliable energy conversion devices for stationary power generation due to their high efficiency and environmental benefits. However, achieving long-term durability remains a critical challenge for commercialization. This study investigates the performance and degradation behavior of a PEMFC stack under 360 hours of constant current operation at approximately 0.22-0.23 A/cm², delivering a stack output of 1.5 kW. Electrochemical Impedance Spectroscopy (EIS) was employed to diagnose cell degradation, revealing increases in ohmic and charge transfer resistances over time. The results highlight the importance of uniform cell performance within the stack to prevent output limitations. Furthermore, we propose a framework for Remaining Useful Life (RUL) prediction to enhance system reliability. Future work will focus on applying these diagnostic techniques under varied operating conditions and integrating machine learning for advanced predictive models, aiming to support the development of stable, long-life PEMFC systems for stationary energy applications.
In this study, static and dynamic analysis verification was performed to apply the fuel cell system to the E-PTO of the Wire aerial vehicle. First, structural analysis was performed to improve the weak points that occurred. Next, vibration analysis was performed on the fuel cell system for which structural safety review was completed according to the wide-band irregular vibration test standard. The analysis results showed that resonance occurred in a specific frequency band and local stress was high, so stiffness reinforcement was performed. After reinforcing the stiffness, stress was reduced through a decrease in transient response characteristics and resonance phenomenon.
Researchers have made significant strides in developing high-performance anode-supported tubular solid oxide fuel cells (SOFCs). These cells feature a thin, dense electrolyte made of Ba(Zr0.1Ce0.7Y0.2)O3-δ (BZCY). The fabrication process involved several key steps. First, fine BZCY powder was prepared using a co-precipitation method. Next, Ni-BZCY anode tubes were created via an extrusion process, boasting a 34 % porosity and an average pore size of 0.381 μm. To optimize cell performance, a Ni-BZCY/BZCY nanocomposite slurry was applied as an anode functional layer (AFL) using a dip-coating method. The BZCY electrolyte itself was then coated with a vacuum slurry coating, and finally, an LSCF-BZCY cathode was added, prepared with dip-coating methods. Impedance analysis, conducted under open-circuit conditions at 700 °C, revealed impressive electrical characteristics. The BZCY electrolyte showed an ohmic resistance of approximately 0.79 Ωcm-2 and a very low polarization resistance of about 0.036 Ωcm-2. When tested in a humidified hydrogen atmosphere (3 % H2O) at temperatures ranging from 600 °C to 700 °C, these tubular BZCY cells delivered outstanding power output. Specifically, they achieved a remarkable maximum power density of roughly 0.51 Wcm-2 at 700 °C. This research highlights the potential of these advanced tubular solid oxide fuel cells based on the BZCY as a proton conductor for efficient energy conversion.
As the demand for sustainable hydrogen (H₂) production grows, catalytic decomposition of methane (CDM) has emerged as a CO2- free pathway for H2 generation, producing valuable multi-walled carbon nanotubes (MWCNTs) as byproducts. This study examines the role of fuel type in shaping the properties and performance of NiOx/AlOx catalysts synthesized via solution combustion synthesis (SCS). Catalysts prepared with citric acid, urea, hexamethylenetetramine (HMTA), and glycine exhibited varying NiO nanoparticle (NP) sizes and dispersions. Among them, the HMTA catalyst achieved the highest Ni dispersion (~ 3.2%) and specific surface area (21.6 m2/ gcat), attributed to vigorous combustion facilitated by its high pH and amino-group-based fuel. Catalytic tests showed comparable activation energy (55.7–59.7 kJ/mol) across all catalysts, indicating similar active site formation mechanisms. However, the HMTA catalyst demonstrated superior CH4 conversion (~ 68%) and stability, maintaining performance for over 160 min under undiluted CH₄, while others deactivated rapidly. MWCNT characterization revealed consistent structural properties, such as graphitization degree and electrical conductivity, across all catalysts, emphasizing that fuel type influenced stability rather than MWCNT quality. H2 temperature-programmed reduction ( H2-TPR) analysis identified moderate metal-support interaction (MSI) in the HMTA catalyst as a key factor for optimizing stability and active site utilization. These findings underscore the importance of fuel selection in SCS to control MSIs and dispersion, offering a strategy to enhance catalytic performance in CDM and other thermocatalytic applications.
The IMO’S 72nd MEPC meeting proposed the goal of reducing greenhouse gas emissions by up to 50% by 2050. Thus, various eco-friendly fuels are proposed as alternatives, but there are also various issues that need to be tackled, such as storage stability and supply system issues in a special environment a ship has. Therefore, in this study, the possibility of reducing greenhouse gases was analyzed by applying MGO as an alternative to boilers operated with HFO, a Bunker-C series. As a result, the exhaust gas temperature decreased by about 11.54% from 316.9℃ to 280.3℃, and the amount of oxygen content increased by about 0.38% from 6.27% to 6.65%. It can be seen that carbon monoxide can be reduced by about 45.28% by simply converting fuel from 45.29 ppm to 24.78 ppm, and carbon dioxide, which is a typical greenhouse gas, can be reduced by about 0.49% from HFO by 11.08% to MGO by 10.59%. This means that some greenhouse gas reduction is possible only by shifting between ship fuels that satisfy ISO-8217, but since there are limitations to achieving strong carbon neutrality proposed by IMO, it will be necessary to actively utilize the use of various alternative fuels in the future.