Various dry active wastes (DAWs) have been accumulated in nuclear power plants since the DAWs are mostly combustible. KAERI has developed a thermochemical treatment process for the used decontamination paper as an operational waste to substitute for incineration process and to decontaminate radionuclides from the DAWs. The thermochemical process is composed of thermal decomposition in a closed vessel, chlorination of carbonated DAWs, separation of soluble chlorides captured in water by hydroxide precipitation, and immobilization of the precipitate. This study examined the third and fourth steps in the process to immobilize Co-60 by fabricating a stable wasteform. Precipitation behaviors were investigated in the chloride solution by adding 10 M KOH. It was shown that the precipitates were composed of Mg(OH)2 and Al(OH)3. Then, the glass-ceramic wasteform for the precipitates were produced by adding additive mixtures in which silica and boron oxide were blended with various ratios. The wasteform was evaluated in terms of volume reduction ratio, bulk density, compressive strength, and leachability.
본 연구에서는 우라늄 폐촉매 처리 공정에서 발생하는 우라늄 함유 폐기물 대상으로 유리-세라믹 매질 구조의 대형 디스크 소결체 형태로 제작 시, 최종 제작된 소결체의 비등방향 수축 특성 및 변형율 변화를 연구하였다. 본 연구에서는 최대 직경 40 cm를 갖는 다양한 크기 원형 디스크 형태와 원형 디스크의 1/4 크기의 부채꼴 형 소결체를 제작하여 이들의 비등방성 수축 특성을 평가하였다. 60 MPa 압력하에서 만들어지는 성형체는 소결 시 성형체의 크기 및 형태에 관계없이 높은 등방성 수축하였다. 제조된 전체 소결체에 대한 비등방성율은 평균 1.6%이었고 이때 평균 부피 감용율은 37.4% 이었다. 이러한 결과 로부터 국내에서 발생한 우라늄 폐촉매를 처리하기 위한 공정에서 발생하는 우라늄 함유 폐기물은 대형 디스크 형태의 유리-세라믹 매질 형태로 고형화함으로써 높은 안정성과 부피감용 효과를 가지며 200 L 드럼에 포장될 수 있음이 확인되었다.
Ceramic ink-jet printing has become a widespread technology in ceramic tile and ceramicware industries, due to its capability of manufacturing products on demand with various designs. Generally, thermally stable ceramic inks of digital primary colors(cyan, magenta, yellow, black) are required for ink-jet printing of full color image on ceramic tile. Here, we synthesized an aqueous glass-ceramic ink, which is free of Volatile organic compound(VOC) evolution, and investigated its inkjet printability. CoAl2O4 inorganic pigment and glass frit were dispersed in aqueous solution, and rheological behavior was optimized. The formulated glass-ceramic ink was suitably jetted as single sphere-shaped droplets without satellite drops. After ink-jet printing and firing processes, the printed glass-ceramic ink pattern on glazed ceramic tile was stably maintained without ink spreading phenomena and showed an improved scratch resistance.
Glass-ceramics were developed many years ago and have been applied in many fields such as electronics, chemistry, optics, etc. Much is already known about glass-ceramic technology, but many challenges in glass-ceramic research are still unresolved. Recently, large amounts of slag have steadily increased in the steel industry as by-products. To promote recycling of industrial waste, including steel industry slags, many studies have been performed on the fabrication of basalt-based highstrength glass-ceramics. In this study, we have fabricated such ceramics using various slags to replace high performance castbasalt, which is currently imported. Glass-ceramic material was prepared in similar chemical compositions with commercial cast-basalt through a pyro process using slags and power plant by-product (Fe-Ni slag, converter slag, dephosphorization slag, Fly ash). The properties of the glass-ceramic material were characterized using DTA, XRD, and FE-SEM; measurements of compressive strength, Vicker’s hardness, and abrasion were carefully performed. It is found that the prepared glass-ceramic material showed better performance than that of commercial cast-basalt.
The Mg-enriched magnesium aluminum silicate (MAS) glass is known for its higher mechanical strength and chemical resistance. Among such glasses, cordierite (Mg2Al4Si5O18) is well known to have a low thermal expansion and low melting point. Polycrystalline engineering ceramics such as alumina can be strengthened by a surface modification with low thermal expansion materials. The present study involves the synthesis of cordierite by a sol-gel process and investigates the effect of glass penetration on the surface of alumina. The cordierite powders were prepared from Al(OC3H7)3, Mg(OC2H5)2 and tetraethyl orthosilicate by hydrolysis and condensation reaction. The cordierite powders were characterized by X-ray diffraction (XRD, Rigaku), scanning electron microscope (SEM, JEOL: JSM-5610), energy dispersive spectroscopy (EDS, JEOL: JSM-5610), and universal testing machine (UTM, INSTRON). The X-ray diffraction patterns showed that the synthesized particles were μ-cordierite calcined at 1100˚C for 1 h. The shape of synthesized cordierite was changed from μ-cordierite to α-cordierite with increasing calcination temperature. Synthesized cordierite was used for surface modification of alumina. Cordierite powders penetrated deeply into the alumina sample along grain boundaries with increasing temperature. The results of surface modification tests showed that the strength of the prepared alumina sample increased after surface modification. The strength of a surface modified with synthesized cordierite increased the most, to about 134.6MPa.
Y-type barium ferrite was prepared by the glass-ceramic method. Glasses with composition of were prepared, and the precipitation behavior of Y-type ferrite from the glass matrix was investigated by heating glass specimens at various temperature. which is a precursor of M-type ferrite was precipitated at about 813 K and an unknown compound, phase X, was precipitated at about 850 K. M-type ferrite and Y-type ferrite started to form at about 923 K and 1103 K, respectively. The formation of Y-type ferrite was int erpreted as the result of the reaction of M-type ferrite with a melt of phase X.
Y-type barium ferrite ( Me=Zn, Co, Cu) expected as an electromagnetic wave absorber were prepared by the glass-ceramic method. The glasses with composition of were prepared. Single-phase powders of Y type barium ferrite were obtained with the composition . The shape of Y-type crystals depended strongly on the heating temperature and changed from a plate-like hexagon to a complex polyhedron with increasing heating temperature. Correlation was recognized between saturation magnetization and crystal shape. Electromagnetic wave absorption characteristics was affected by the saturation magnetization and crystal shape.
고온 안정성의 유리계로 알려진 회토류 알루미나 규산염계중, Nd2O3-Al2O3-SiO2(NdAS)계 유리의 응용범위를 찾고자 결정화유리를 제조하여 그 물성의 특성을 평가하였다. NdAS에 결정화제로 TiO2를 첨가하여 내부결정화를 유도하여 생성된 결정화유리에 대하여 결정상과 잔류유리의 물리적, 열적, 기계적 물성을 측정하였다. NdAS-TiO2유리계는 열처리와 조성 조건에 따라 생성된 표면 및 내부결정상은 같은 결정상을 갖는 것으로 X선회절의 결과로 확인되었으나, 알려 있지 않은 결정상으로 내부결정의 경우, 원자구성비는 Nd4.6Si7.2Al4.0Ti2.4O32이었다. 결정화유리의 선팽창계수는 5.4~6.2×10-6/˚C 정도로 경정성장이 일어날수록 증가되었다. 결정화유리중의 결정상의 경도와 탄성계수는각 각 12GPa, 220Gpa으로 나타난 것을 고려한다면 내부결정화에 의한 결정화유리의 물성은 고온 구조용 재료로 활용도가 넓을 것으로 본다.
단사정 HBO2 분막을 무기접착제로 이용하여 선택적 레이저 소결 기술을 적용시켜 알루미나-글래스 복합재료를 제조하였다. 만들어진 green SLS 시험편을 여러 온도에서 열처리하여 글래스-세라믹 복합재료를 얻었다. 글래스의 양이 많을수록 복합재료는 높은 밀도와 높은 굽힘강도를 보여주었다. 열처리 온도 900˚C에서 복합재료는 최대 밀도와 최대 강도를 나타낸다. 이것은 글래스의 낮은 점도로 인한 좋은 유동성 때문에 글래스의 재분배가 이루어졌기에 가능하다고 생각되어진다. 그리고 기공이 많은 열처리한 SLS 시험편에 콜로이드 실리카를 주입시켜 치밀화시켰다.
(Ba, Sr)TiO3계에 저융점의 Glass물질을 첨가하여 저온소결이 가능하며, 고유전율을 갖는 유전체 재료를 제조하여, 그 특성을 조사하였다. 본 연구에서는 고유전율의 (Ba, Sr)TiO3계에 PbO함량이 서로 다른 Glass물질을 첨가하여 조성변화에 따른 저온소결거동 및 유전특성을 조사하였으며, 적층형 세라믹 Capacitor(MLCC)에 응용하기 위하여 다양한 조성으로 제조하였다. PbO-ZnO-B2O2계 Glass 성분을 첨가하여 소결온도를 1350˚C에서 1050˚C까지 낮출수 있었으며, 4wt% glass 첨가로 1150˚C 이하에서 2시간 소결한 저온소결용 재료는 실온에서 8000정도의 높은 비유전율과 0.005의 낮은 유전손실 그리고 광역온도범위에서 유전상수의 안정성을 가진 우수한 특성을 나타내며, 입자크기가 1~3 μm 정도로 치밀한 미세구조를 가지고 있다. 본 연구의 저온소결용 유전체 재료는 Z5U 규격을 만족시키고 기존의 BaTiO3계 재료에 비해 낮은 소결온도를 가지므로 MLCC에 응용시 내부전극으로 Ag-Pd alloy 사용이 가능한 것으로 밝혀졌다.
A coating system derived from the combination of a sodium and a potassium water glass was developed to apply for steel in oxidizing and humidity environments at elevated temperature. Parameters such as filler volume, viscosity or coating thickness were varied to optimize the coatings. The coated specimens were investigated by TGA, SEM/EDS, and XRD to clarify the microstructure morphology and anti-oxidation behavior. Finally, oxidation tests, adhesion tests, thermal shock resistance tests and humidity resistance tests were performed to evaluate the performance of developed coating.
In Korean steel making industry is generating 25 billion tons of slag as industrial by-products per year. Uses of these slags to manufacture high functional abrasive material are of greater feasible option for sustainable development of industry as well as effectively solve the pollution issue associated with these waste. Recycling methods of slag have been actively studied for decades, but most of the slag recycling methods studied are related to low cost building materials. Recently, several combinations of by-products have been used in glass-ceramic manufacturing, mostly the abrasive materials are basalt based glass-ceramic. Using these industrial by-products instead of natural basalt ores, high functional product can be manufactured. This piece of investigation focused on the feasibility study for producing the basalt based glass-ceramic from recycled industrial by-products only, without any natural materials as raw materials. By controlling various process parameters like, mixture ratios of materials, heat treatment for casting, and soaking basalt based glass-ceramic were prepared. The prepared materials were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), thermo-gravimetry and differential thermal analysis (TG-DTA). Excellent material properties were observed.