검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 71

        1.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It was found in this study that fluorinated microporous carbon aerogels with enhanced hydrophobicity could be successfully prepared by direct fluorination to separate water-in-oil emulsions at high flux. The fluorinated carbon aerogel (F-CA) surface treated by the fluorination method had a water contact angle of 151.2° and could immediately absorb oil. In addition, the unique network structure of F-CA and its hydrophobicity allow surfactant-stabilized water-in-oil emulsions to be effectively and simply separated under gravity without requiring external forces such as vacuum or pressurization. The network structure of F-CAs consists of randomly connected spherical particles that form fluorinated permeation channels, which induce high flux during emulsion separation. The F-CA spherical particles have nanosized pores and high hydrophobicity, which repel and trap water droplets to increase the separation purity. Therefore, F-CA exhibited excellent performance, such as high filtrate purity (up to 99.9954%) and flux (up to 11,710 L/m2h). Furthermore, F-CA reusability was demonstrated as it did not lose its hydrophobicity and maintained its performance even after repeated use. This type of aerogel has great potential to be utilized throughout various environmental fields, including oil remediation.
        4,200원
        2.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, we have designed a novel gas inlet structure for efficient usage of growth and doping precursors. Our previous gas injection configuration is that the gas is mixed to one pipe first, then divided into two pipes, and finally entered the chamber symmetrically above the substrate without a jet nozzle. The distance between gas inlet and substrate is about 14.75 cm. Our new design is to add a new tube in the center of the susceptor, and the distance between the new tube and substrate is about 0.5 cm. In this new design, different gas injection configurations have been planned such that the gas flow in the reactor aids the transport of reaction species toward the sample surface, expecting the utilization efficiency of the precursors being improved in this method. Experiments have shown that a high doping efficiency and fast growth could be achieved concurrently in diamond growth when methane and diborane come from this new inlet, demonstrating a successful implementation of the design to a diamond microwave plasma chemical vapor deposition system. Compared to our previous gas injection configuration, the growth rate increases by 15-fold and the boron concentration increases by ~ 10 times. COMSOL simulation has shown that surface reaction and precursor supply both have a change in determining the growth rate and doping concentration. The current results could be further applied to other dopants for solving the low doping efficiency problems in ultra-wide-band-gap semiconductor materials.
        4,600원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to a sign device using quantum dot film. We synthesized quantum dots with an absolute quantum yield of more than 95% using the solution process method, coated the quantum dot film by mixing it with acrylate resin, made a sign device, and studied the improvement of visibility, and obtained the following conclusions. Quantum dots with absolute quantum yield of 97.63% at 535 nm and 97.85% at 615 nm were synthesized by doping InP with GaP and stacking ZnSe and ZnS composite shells. The synthesized quantum dots were mixed with acrylate syrup at a weight ratio of 10% to coat a film with a luminance uniformity of more than 95%, and the quantum dot film was attached to a luminous display with an insulation capacity of 500 V, an insulation resistance of 99.9 GΩ, and a luminance of 688.5 ㏅/㎠ at white region and 122.3 ㏅/㎠ at red region.
        4,000원
        5.
        2023.11 구독 인증기관·개인회원 무료
        Selenium (Se), a vital trace element found naturally, plays a pivotal role for human being in low concentrations. Notably, within the spectrum of essential elements, Se possesses the most restricted range between the dietary deficiency (< 40 μg day-1) and the acute toxicity (> 400 μg day-1). Therefore, it is of paramount importance to maintain bioavailable Se levels within permissible limits in our drinking water sources. Among the various Se species, inorganic variants such as selenite (SeO3 2-) and selenate (SeO4 2-) are highly water-soluble, with SeO3 2- being notably more toxic than SeO4 2-. Consequently, the primary focus lies in effectively sequestering SeO3 2- from aquatic environments. Numerous methods have been investigated for SeO3 2- adsorption, including the use of metal oxides and carbon-based materials. Especially, iron oxides have garnered extensive attention due to their water stability and environmentally friendly properties. Nevertheless, their limited surface area and insufficient adsorption sites impose constraints on their efficacy as materials for SeO3 2- removal. Recently, metal–organic frameworks (MOFs), composed of metal centers bridged by organic linkers have increasingly focused as promising adsorbents for SeO3 2- removal, offering significant advantages such as large surface areas, high porosities, and structural versatility. Furthermore, there is a growing interest in defective MOFs, where intentional defects are introduced into the MOF structure. This deliberate introduction of defects aims to enhance the adsorption capacity by increasing the number of available adsorption sites. In this context, herein, we present the Fe-BTC (BTC = 1,3,5-benzenetricarboxylic acid) synthesized via a post-synthetic metal-ion metathesis (PSMM) approach, which is one of the defect engineering methods applied to metal sites. We employ the well-established MOF, HKUST-1, known for its substantial surface area, as the pristine MOF. While the pristine MOF has a crystalline phase, during the PSMM process, Fe-BTC is transformed into an amorphous phase by allowing the introduction of numerous metal defect sites. These introduced metal defect sites serve as Lewis acidic sites, enhancing the adsorption capability for selenite. Furthermore, despite its amorphous nature, Fe-BTC exhibits a substantial surface area and porosity comparable to that of the crystalline pristine MOF. Consequently, Fe-BTC, distinguished by its numerous adsorption sites and its high porosity, demonstrates a remarkable capacity for selenite adsorption.
        6.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present numerical research, develop a high-efficiency fan model to improve the performance of the cooling fan, which accounts for a lot of weight in the efficiency of the cooling tower. For this purpose, analyze the shape of the existing cooling fan model and use CFD. The main variable set in the analysis of the cooling fan model is the pitch angle, and the range of the pitch angle was investigated in the range of 0° to 20°. The purpose of this research is to select the optimum driving condition by using CFD for setting the pitch angle that depends on the existing experience. The research results showed the best results when the pitch angle range was 15°~18°.
        4,000원
        7.
        2023.05 구독 인증기관·개인회원 무료
        In order to use nuclear energy stably, high level radioactive waste including spent nuclear fuel that is inevitably discharged from nuclear power plants after electricity generation must be managed safely and isolated from the human living area for a long period of time. In consideration of the accumulated amount of spent nuclear fuel anticipated according to the national policy for HLW management, the area required for the deep geological repository facility is expected to be very large. Therefore, it is essential to conduct various studies to optimize the area required for the disposal of spent nuclear fuel in cases where the nationally available land is extremely limited, such as in Korea. In this study, as part of such research, the strategies and the requirements for the preliminary design of a high efficiency repository concept of spent nuclear fuel were established. For PWR spent nuclear fuel, seven assemblies of spent nuclear fuel can be accommodated in a disposal canister, and high burnup of spent nuclear fuel was taken into consideration, and the source terms such as the amount and time of discharge and disposal were based on the 2nd national basic plan. By evaluating the characteristics, the amount of decay heat that can be accommodated in the disposal canister was optimized through the combination of seven assemblies of spent nuclear fuel. The cooling period of the radiation source for the safety assessment of the repository system was set at 55 years, and the operation of the repository would start from 2070 and then the disposal schedule would be conducted according to the disposal scenario based on the national basic plan. With these disposal strategies described above, the main requirements for setting up the conceptual design of the high efficiency repository system to be carried out in this study were described below. • A combination of seven spent nuclear fuels with high heat and spent nuclear fuels with low heat was loaded into a disposal canister, and the thermal limit per disposal canister was 1,600 W. • In order to maintain the long-term performance of the repository, the maximum temperature design limit in the buffer material was set to 130°C. • In the deep disposal environment, the safety factor [yield strength/maximum stress] required to maintain the structural stability of the disposal canister should be maintained at 2.0 or higher so that integrity of the canister can be maintained even under long-term hydrostatic pressure and buffer swelling pressure in the deep disposal environment. • The repository should have a maximum exposure dose of 10 mSv/yr or less, which is the legal limit in case of a single event such as an earthquake, and the risk level considering natural phenomena and human intrusion, which is less than the legal limit of 10-6/yr. These strategies and requirements can be used to develop the high-efficiency geological disposal concept for spent nuclear fuels as an alternative disposal concept.
        8.
        2023.05 구독 인증기관·개인회원 무료
        As Korea has relatively small land area and large population density compared to other countries considering the DGD concept such as Finland and Sweden, improvements of disposal efficiency in the viewpoint of the disposal area might be needed for the current disposal system to alleviate the difficulties of site selection for the HLW repository. In this research, we conduct a numerical investigation of the disposal efficiency enhancement for a high-level radioactive waste (HLW) repository through three design factors: decay heat optimization, increased thermal limit of buffer, and double-layer concept. In the optimized decay heat model, seven SNFs with the maximum and minimum decay heat depending on actual burn-up and cooling time are iteratively combined in a canister. Thermal limit of buffer is assumed as 100°C and 130°C for reference and high-efficiency repository concepts, respectively. By implementing an optimized decay heat model and a single-layer concept with a thermal limit of buffer set at 100°C, the disposal efficiency increases to 2.3 times of the improved Korean Reference disposal System (KRS+). Additionally, incorporating either an increased thermal limit of buffer to 130°C or a double-layer concept leads to a further 50% improvement in disposal efficiency. By integrating all three design factors, the disposal efficiency can be enhanced up to five times that of the KRS+ repository. Our analysis of rock mass stability reveals that increasing the thermal limit of buffer can generate rock spalling failure in a wider area. However, when accounting for the effect of confining stress by swelling of buffer and backfill using the Mohr-Coulomb failure criteria, the rock mass failure only occurred at the corner between the disposal tunnel and deposition hole when the thermal limit of buffer was increased and a single-layer concept was applied. The results given in this study can provide various options for designing the high-efficiency repository in accordance with the target disposal area and quality of the rock mass in the potential repository site.
        9.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 스마트시티 구축의 핵심인 수소연료전지의 활용형태를 분석하고 해결방안을 제시하는 것이다. 수소연료전지를 활용하는 발전소의 경우 간헐성 문제가 없다는 장점 때문에 향후 가장 유망한 사용 형태로 분석됐다. 다만 많은 장점에도 불구하고 폭발 우려와 특정 수소 생산방식의 경우 이산화탄소 발생 문제 등으로 지역주민들의 반발이 지속적 으로 나타나고 있어 이를 해결하는 것이 스마트시티 구축의 주요 관건이 될 것으로 분석된다. 마지막으로 현재의 수소 생산 방식을 분석하고 이에 따른 문제점을 파악하여 스마트시티의 완전한 구축을 위한 해결책을 제시하였다.
        4,000원
        12.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 장미 ‘Bubble Gum’에 대한 수확 후 LED 광 환경 과 살균제 Azoxystrobin 보존용액 처리 시 절화품질에 미치는 영향을 구명하고자 수행되었다. 광은 백색 LED와 유색 LED (red:blue=5:1)로 처리하였고, 보존용액은 수돗물(tap water, TW)과 Azoxystrobin 0.05 mL・L-1를 처리하였다. 백색 LED처 리의 절화수명은 TW, Azoxystrobin처리구 각각 9.6일, 9.7일 로 LED 광과 보존용액 처리 간의 유의차가 없었다. 유색 LED 처리의 절화수명은 TW처리구가 13.6일, Azoxystrobin처리구 가 9.8일로, 유색 LED 처리구가 대조구(백색 LED + TW)에 비해 절화수명을 4일 연장시켰다. 절화수명 종료 증상은 LED 광 조건과 관계없이 Azoxystrobin처리구는 꽃잎 위조와 청변 화 증상을 감소시켰다. 모든 처리구에서 상대생체중과 수분흡 수율은 각각 처리 후 2일, 4일까지 증가하다 감소하는 경향을 보였다. 수확 직후 대비 처리 6일 후 화색 변화율과 잎의 엽록 소 함량은 수확 직후와 모든 처리구에서 차이가 없었으며, 화 폭증가율도 처리 간 차이가 없었다. 결론적으로 백색 LED + Azoxystrobin 보존용액처리는 절화장미의 꽃잎 위조와 청변화 증상을 감소시키지만, 절화수명 연장효과가 없었으며, 적색 +청색 LED 처리는 장미의 절화수명 연장효과에 효과적이었다.
        4,000원
        13.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the environmental regulations of the International Maritime Organization (IMO), the number of ships using cryogenic fuel such as LNG (liquefied natural gas) is increasing rapidly, and the demand for eco-friendly ships is expected to grow further in the future. The material of the tank for storing cryogenic fuel such as LNG is limited within the IGC Code, and available materials include 9% nickel steel, Invar (36% nickel steel), Al5083-0, STS304L, and high manganese steel. Recently, 9% nickel steel has been used as a tank in LNG fuel-powered ship projects, and it has excellent thermal/mechanical properties in cryogenic LNG environmental conditions (-163°C). In this study, it is conducted an experimental study on SAW(Submerged Arc welding), which has better welding efficiency than FCAW(Flux Cored Arc Welding), which is mainly used for 9% nickel steel materials. In addition, to verify the reliability of the welded part after the welding test, cross-sectional observation of the welded part was performed and the mechanical properties such as the tensile strength and cryogenic impact strength of the welded part were evaluated.
        4,000원
        18.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the strengthening of domestic and international environmental regulations, the replacement of FRP ships with aluminum ships for small ships is continuously in progress. Domestic aluminum ships are being applied to various types of ships, mainly special ships, passenger ships and fishing ships. Gas metal arc welding(GMAW) is used as a welding method when manufacturing ships using aluminum materials for ships with a thickness of 5mm or more. However, it is carried out manually by the workers in the shipyard, and there is a limit to relying on the skills of the workers. In this study, basic research on high-efficiency tandem welding was performed as a basic study for the application of high-quality automatic welding equipment when working on aluminum ships. In this study, welding deformation according to constraint conditions was comparatively analyzed using tandem welding equipment and cross-sections of welds were evaluated for each experiment.
        4,000원
        19.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 END 금연동기유발 프로그램이 흡연 고등학생의 일산화탄소, 금연자기효능감, 흡연일수, 1일 흡연량에 미치는 효과를 확인하기 위해 실시한 비동등성 대조군 전·후 시차설계를 이용한 유사 실험연구이다. 대상자는 C시에 소재한 고등학생으로 금연에 관심이 있는 흡연학생으로 실험군 27명, 대조군 28명 총 55명이었으며 자료수집은 2018년 7월 12일부터 10월 4일까지였다. 대상자에게 중재한 프로그램은 END 금연동기유발 프로그램으로 주 1회 50분, 총 6주간이었다. 중재결과 실험군은 대조군에 비해 금연 자기효능감(z=110.00, p<.001), 흡연일수(z=640.00, p<.001), 1일 흡연량(z=520.50, p<.016) 이 지지되었다. 따라서 END 금연동기유발 프로그램은 학교 현장에서 흡연 고등학생의 흡연율을 낮추고 금연동기를 유발하여 금연을 유도하기 위한 중재로 본 프로그램의 적용을 제안한다.
        4,200원
        20.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        에너지를 절감하기 위해 고효율 히트펌프를 개발하기 위한 많은 연구가 이루어지고 있으며, 실외기 코일에 발생하는 서리가 발생하는 현상을 줄이거나 없애기 위한 연구도 동시에 이루어지고 있다. 계절에 관계없이 히트펌프의 실외기에 서리가 발생하지 않는 연구를 진행할 수 있도록 자연상태와 동일한 조건에서 실험할 수 있는 항온챔버를 구축하였다. 실험장치의 타당성을 검증하기 위해 실험장치인 항온챔버 내의 실외기 앞 덕트의 직선 길이를 3가지 조건으로 나누어 시뮬레이션 하였다. 그 결과 덕트 관경의 10배 길이만큼 직선 공간을 확보해야 한다는 것을 알게 되었다.
        4,000원
        1 2 3 4