Diesel engine has the advantages of strong power, low fuel consumption and good durability, so it has been widely used in transportation, automobile, ship and other fields. However, the nitrogen oxides(NOx) and particulate matter(PM) emitted by diesel engines have become one of the main causes of air pollution. Especially during idling, the engine temperature is low, and there are more residual exhaust gases in the combustion chamber, resulting in the formation of more harmful emissions. In this study, performance of a single cylinder, four-stroke, direct injection (DI) diesel engine fueled with diesel–biodiesel mixtures has been experimentally investigated. The findings show that a remarkable improvement in PM–NOx trade-off can be achieved by burning diesel-bioethanol blend fuels.
자연발화 현상은 산업현장 또는 우리 생활 속 어디에서나 발생하며 물질이 대기 중에서 점 화원 없이 스스로 발화되는 현상이다. 화학반응 속도가 빨라져 발생하는 열이 증가하게 되어 자연발화의 위험성은 더욱 커진다. 본 연구에서는 식품과 화장품 소재로 이용되는 안전한 원료를 배합하여 다양한 자연발화 현상 중 특히 석탄 자연발화 방지제를 제조하였다. 인도네시아산 저열량, 저급탄에 대한 Lab 과 Field Test를 통하여 석탄 자연발화 억제 효과를 확인하였다. 옥외 현장 테스트 결과, 비교군(90일 후 발화)에 비하여 본 연구에서 제조한 발화방지제는 120일 이상 우수한 자연 발화억제 효과를 나타내었으 며 실내저탄장에서 50일 동안의 CO의 농도변화를 비교하여 CO 농도 제어 효과를 확인하였다. 비교군 인 석탄, 기존의 발화 방지 방법보다 우수한 결과를 확인하였다. 또한, 환경을 고려한 토양 및 수질 시 험, 작업 근로자를 고려한 발화방지제의 MSDS, 수질, 안 자극 등의 공인시험을 통하여 환경과 근로자 작업환경의 안전성 등을 연구하여 2024년부터 적용되는 실내저탄장용 석탄 발화방지제의 가능성을 확인 할 수 있었다.
As the use of capacitors in electrical appliances and electrical control circuits increases, the related electrical fire is increasing. There are various parts such as resistors, coils, and capacitors that make up an electric circuit. Among them, the ignition of a capacitor with a temporary charging function is closely related to the structural characteristics of the capacitor. Capacitors can explode due to various reasons, and the high heat generated when they explode ignites the inflammable dielectric, which in turn burns the inflammable materials such as the surrounding electric wires and spreads into a fire. In this paper, the ignition mechanism is studied by conducting a reenactment experiment on the various probabilities that can be ignited in an electric capacitor, and the prevention measures to be applied to the fire prevention are presented.
The effect of water vapor addition on the ignition delay of iso-octane/air mixture was numerically investigated with detailed chemical reaction mechanism. The Chemkin-III was utilized to evaluate the delay time of autoignition for isobaric conditions. By dilution effect and thermal effect, water vapor addition increases the ignition delay time. However, the chemical effect by adding water vapor makes the ignition delay shortened. The ignition delay by the chemical effect is reduced by two ways. Dissociation of water vapor increases the quantities of OH and H. One way is that OH directly makes the rate of iso-octane oxidation reaction 2 increase. The other is that HO2 is produced more by three-body reaction, H+O2+M →HO 2+M, which makes the rate of iso-octane oxidation reaction 3 increase. All trends of three effects are similar according to water vapor addition.
In this study, the applicability of biodiesel fuel was investigated as an hopeful alternative fuel for a compression ignition engine. The exhausted smoke emission of biodiesel fuel was reduced remarkably in comparison with commercial diesel fuel, that is, it was reduced approximately 64% at 2500 rpm, full load condition. And, torque, power and brake specific energy consumption rate did not showed significant differences. But, NOx emission of biodiesel fuel was slightly increased in comparison with the commercial diesel fuel. Generation of CO2 is considerably reduced by photosynthetic action in the course of growing biomass series plants, the material for biodiesel fuel.
In this paper, the combustion characteristics of constant volume combustion chamber(CVCC) were experimentally investigated when biodiesel is mixed with pure gasoline. The experiment was performed on two gasoline biodiesel samples designated by GB05 and GB20 which is mixed with 5% and 20% biodiesel respectively. It was confirmed that the ignition delay time decreases as the temperature of injection engine increases due to ignition delay. Also, it was shown that the ignition delay time decreases as the biodisel mixing ratio increases from 5% to 20%.
The autoignition characteristics of n-heptane/n-butanol were investigated both experimentally and numerically. The effects of oxygen concentration and exhaust gas recirculation rate on the autoignition characteristics were evaluated. A rapid compression machine was employed to measure ignition delay times of blended fuels. A numerical study on the ignition delay time was performed using the CHEMKIN-PRO software to calculate ignition delay time and predict the chemical species in the combustion process. The results revealed that the ignition delay time increased with decreasing oxygen concentration due to the thermal load effect of nitrogen. The oxidation reaction of n-heptane in a low temperature regime was limited with decreasing oxygen concentration. The ignition delay time sharply decreased with exhaust gas recirculation because of the intermediate species in the exhaust gas. Exhaust gas recirculation reduced first ignition delay dramatically. However, the time interval between the first and main ignition increased with increased exhaust gas recirculation.
In this paper, the influence of the injector failure of the GDI engine on the air-fuel ratio inside the combustion chamber can be analyzed through time and shape analysis of the damping process of the ignition coil secondary waveform at 800rpm, 1500rpm, 2000rpm, 3000rpm. In particular, there is a correlation that affects air pollution associated with global warming, such as HC and NOx. To prevent this, periodic injector inspections can improve the fuel efficiency of the vehicle and reduce exhaust pollutants.
The test was done on cars travelling at the speeds of 20km/h, 60km/h and 100km/h using the performance testing mode for chassis dynamometer. In this test, the secondary ignition waveform, exhaust emissions and fuel consumption were measured in case of faulty MAP sensor, faulty oxygen sensor and spark plugs. The following results from the related analysis of secondary waveform, emission and fuel consumption measurements were obtained : 1) The fuel consumption was higher in the order of oxygen sensor trouble, MAP trouble, spark plug trouble, before maintenance and after maintenance. Maximum fuel economy is 9.3km/L, the minimum fuel economy is 3.2km/L, the difference between max. and min. is 65.5%. 2) If you compare the oxygen sensor trouble with after maintenance, the CO has improved an average of 98%, fuel economy average of 60%. And the HC has improved an average of 87%, fuel economy average of 60%. The fuel consumption and exhaust gas was bad in the order of oxygen sensor trouble, MAP trouble and S/P trouble.
This study aims to examine the risk of electrical fire in places where electric heat wires are used. In general, the use of electric heating wires is becoming more common and prevalent in a bid to prevent increasing damage caused by freezing and bursting in residential water pipes, factory pipes and irrigation pipes in vinyl greenhouse and a variety of heat wire products are available in market with legal safety requirements imposed on them. However, the widespread use of anti-freezing burst heat wire products has caused increasing incidents of fire, which often fail to be incorporated into statistics due to quick onsite extinguishing and insignificant damage although damage is gradually on the rise. Against this backdrop, this study aims to look into the possibility of ignition caused by electric heat wires and the mechanism of how it turns into catching fire through overheat and short circuit tests for anti-freezing burst electrical heat wires (hereinafter called the ‘heat wire’) and expects to serve as the basis for further observations and analyses on the cause of fire and the process of ignition in a scientific manner.
In this study, the potential possibility of bioenergy was investigated as an alternative fuel for a naturally aspirated indirect injection diesel engine. The smoke emission of biodiesel fuel was reduced remarkably in comparison with diesel fuel, that is, it was reduced approximately 64% at 2500rpm, full load condition. And, power, torque and brake specific energy consumption showed no significant differences. However, NOx emission of biodiesel fuel was slightly increased compared with the commercial diesel fuel.
In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the optimum performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its higher ignition temperature. The purpose of this study is to investigate how the ignition spark timing conversion influences the engine performance of LPG/Gasoline Bi-Fuel engine. In order to investigate the engine performance during combustion, engine performance are sampled by data acquisition system, for example cylinder pressure, pressure rise rate and heat release rate, while change of the rpm(1500, 2000, 2500) and the ignition timing advance(5°, 10°, 15°, 20°). As the result, between 1500rpm, 2000rpm and 2500rpm, the cylinder pressure and pressure rise rate was increased when the spark ignition was advanced but pressure rise rate at 20° was smaller value.
In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for a direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenated blended fuel which has seven kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission have been investigated. Ethylene glycol mono-n-butyl ether(EGBE) contains oxygen component 27% in itself, and it is a kind of effective oxygenated fuel of mono-ether group that the smoke emission of EGBE is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in a diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and cooled EGR method.
Due to the global warming problem, diesel engine is becoming an one of the most promising solutions for vehicles in the world. Compared to spark-ignition engines, diesel engines generally have lower unburned hydrocarbon and carbon monoxide, but they also produce still higher levels of NOx and smoke emissions even though using a common-rail injection system. To reduce the diesel emissions, DOC and DPF system have been developed to comply with tighten diesel emission regulations. This paper describes the NOx and smoke emission characteristics of current diesel vehicle with a post injection and plasma after-treatment system. Emissions tests were performed according to New European Driving Cycle mode. Results from these tests show that NOx and smoke emissions with Urea post injection and plasma treatment system is 72% lower than that without the system in the NEDC mode.
When a fire breaks out, it is difficult to find out the causes of the fire, because combustible things around fire scene are usually burnt away. Among many causes of fires are electronic wires, this thesis deal with the destroyed sheath of electronic wires caused by fire. It was studied with the use of measurement devices focusing on the distinctions of wires and conductors. This study especially emphasized the process of deterioration, burning pattern, and composition of electronic wire conductor. It also has a phenomenological approach to the distinctive cause of fire by some partial force. The fire prevention methods have been suggested through the analysing results of fire patterns. This study is expected to be a useful material for analyzing various electrical fires.
In this paper, the effects of oxygen component in oxygenated additives blended fuels on the exhaust emissions have been investigated for direct injection diesel engine. It tested to estimate changes of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenated additives blended fuels which have four kinds of fuel and various mixed rates. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission and brake specific fuel consumption rate also have been investigated. The results of this study show that individual hydrocarbons as well as total hydrocarbon of oxygenated blended fuels are reduced remarkably compared with diesel fuel. It was found that simultaneous reduction of smoke and NOx emission was achieved with oxygenated blended fuels and cooled EGR metho