검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 114

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fulvic acid, a humic substance with unique properties, has sparked interest due to its potential applications in the treatment of allergic diseases, Alzheimer's disease, and as a microplastic adsorbent. However, conventional extraction methods produce insufficient quantities for commercial use, which has prompted research to enhance fulvic acid production. In this study, we investigated the impact of Saccharomyces cerevisiae fermentation on the yield and spectral characteristics of fulvic acid extracted from white peat. Fulvic acid was extracted from both S. cerevisiae-treated and untreated white peats using acid precipitation. The yield of fulvic acid from the S. cerevisiae treated group reached its highest at 3.5 % after 72 hr of fermentation, which was significantly higher than the untreated group (1.1 %). Fourier Transform Infrared (FTIR) analysis revealed similarities in functional groups and characteristic absorption bands between the treated and untreated fulvic acid samples. These findings suggest that S. cerevisiae fermentation can increase the yield of fulvic acid extracted from white peat, providing a promising approach for enhancing the commercial viability of fulvic acid production.
        4,000원
        4.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A progressive muscle atrophy is strongly associated with aging, resulting in lower quality of life in elderly individuals. This study was conducted to determine relative hemoglobin (Hb) concentrations in the rabbit model of the sciatic nerve transection injury using non-invasive diffuse optical spectroscopy (DOS). From the 2nd week to the end of the experiment after sciatic nerve injury, a total muscle mass in nerve injured-group (NI group) significantly reduced compared with that in the normal group (p<0.001). During the capillary occlusion after nerve injury, the deoxy-hemoglobin (Hb-R) concentration in NI group significantly increased compared to that in the normal group at the 2nd and 3rd week after sciatic nerve injury (p<0.05). During the capillary release after nerve injury, the oxy-hemoglobin (Hb-O2) concentration in NI group significantly decreased at the 1st and 3rd week, and Hb-R significantly increased at 2nd week, compared to those in the normal group (p<0.05). Histological changes in the gastrocnemius muscle of NI group observed that clear fat filled spaces at the periphery of muscle fibers and angular fibers. From the results of this study, non-invasive DOS could be used to measure changes of Hb concentrations in muscles.
        4,000원
        5.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Near infrared reflectance spectroscopy (NIRS) is routinely used for the determination of nutrient components of forages. However, little is known about the impact of sample preparation and wavelength on the accuracy of the calibration to predict minerals. This study was conducted to assess the effect of sample preparation and wavelength of near infrared spectrum for the improvement of calibration and prediction accuracy of Calcium (Ca) and Phosphorus (P) in imported hay using NIRS. The samples were scanned in reflectance in a monochromator instrument (680–2,500 nm). Calibration models (n = 126) were developed using partial least squares regression (PLS) based on cross-validation. The optimum calibrations were selected based on the highest coefficients of determination in cross validation (R2) and the lowest standard error of cross-validation (SECV). The highest R2 and the lowest SECV were obtained using oven-dry grinded sample preparation and 1,100-2,500 nm wavelength. The calibration (R2) and SECV were 0.99 (SECV: 468.6) for Ca and 0.91 (SECV: 224.7) for P in mg/kg DM on a dry weight, respectively. Results of this experiment showed the possibility of NIRS method to predict mineral (Ca and P) concentration of imported hay in Korea for routine analysis method to evaluate the feed value.
        4,000원
        6.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study was to investigate the feasibility of discrimination 12 different cultivar of sorghum × sudangrass hybrid (Sorghum genus) seed through near infrared spectroscopy (NIRS). The amount of samples for develop to the best discriminant equation was 360. Whole samples were applied different three spectra range (visible, NIR and full range) within 680-2500 nm wavelength and the spectrastar 2500 Near near infrared was used to measure spectra. The calibration equation for discriminant analysis was developed partial least square (PLS) regression and discrimination equation (DE) analysis. The PLS discriminant analysis model for three spectra range developed with mathematic pretreatment 1,8,8,1 successfully discriminated 12 different sorghum genus. External validation indicated that all samples were discriminated correctly. The whole discriminant accuracy shown 82 ~ 100 % in NIR full range spectra. The results demonstrated the usefulness of NIRS combined with chemometrics as a rapid method for discrimination of sorghum × sudangrass hybrid cultivar through seed.
        4,000원
        9.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, whole crop rice samples were used to develop near-infrared reflectance (NIR) equations to estimate six forage quality parameters: Moisture, crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), Ash and relative feed value (RFV). A population of 564 whole crop rice representing a wide range in chemical parameters was used in this study. Undried finely chopped whole crop rice samples were scanned at 1 nm intervals over the wavelength range 680–2500 nm and the optical data recorded as log 1/Reflectance (log 1/R). NIRS calibrations were developed by means of partial least-squares (PLS) regression. The correlation coefficients of cross-validation (R2 cv) and standard error of cross-validation (SECV) for whole crop rice calibration were 0.98 (SECV 1.81%) for moisture, 0.89 (SECV 0.50%) for CP, 0.86 (SECV 1.79%) for NDF, 0.89 (SECV 0.86%) for ash, and 0.84 (SECV 5.21%) for RFV on a dry matter (%), respectively. The NIRS calibration equations developed in this study will be useful in predicting whole crop rice quality for these six quality parameters.
        4,000원
        10.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid and accurate method of evaluating some chemical compositions in forages. The objective of this study was to evaluate the potential of NIRS, applied to imported forage, to estimate the moisture and chemical parameters for imported hays. A population of 392 imported hay representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1 nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation(R2) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS predicted the chemical parameters with very high degree of accuracy. The R2 and SECV for imported hay calibration were 0.92(SECV 0.61%) for moisture, 0.98(SECV 0.65%) for acid detergent fiber, 0.97(SECV 0.40%) for neutral detergent fiber, 0.99(SECV 0.06%) for crude protein and 0.97(SECV 3.04%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of imported hay in Korea for routine analysis method to evaluate the feed value.
        4,000원
        11.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to explore the accuracy of near infrared spectroscopy(NIRS) for the prediction of moisture content and chemical parameters on winter annual forage crops. A population of 2454 winter annual forages representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation(R2) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS calibration model to predict the moisture contents and chemical parameters had very high degree of accuracy except for barely. The R2 and SECV for integrated winter annual forages calibration were 0.99(SECV 1.59%) for moisture, 0.89(SECV 1.15%) for acid detergent fiber, 0.86(SECV 1.43%) for neutral detergent fiber, 0.93(SECV 0.61%) for crude protein, 0.90(SECV 0.45%) for crude ash, and 0.82(SECV 3.76%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of winter annual forage for routine analysis method to evaluate the feed value.
        4,000원
        20.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Near infrared spectroscopy (NIRS) is a rapid and accurate method for analyzing the quality of cereals, and dried animal forage. However, one limitation of this method is its inability to measure fermentation parameters in dried and ground samples because they are volatile, and therefore, respectively lost during the drying process. In order to overcome this limitation, in this study, fresh coarse haylage was used to test the potential of NIRS to accurately determine chemical composition and fermentation parameters. Fresh coarse Italian ryegrass haylage samples were scanned at 1 nm intervals over a wavelength range of 680 to 2500 nm, and optical data were recorded as log 1/reflectance. Spectral data, together with first- and second-order derivatives, were analyzed using partial least squares (PLS) multivariate regressions; scatter correction procedures (standard normal variate and detrend) were used in order to reduce the effect of extraneous noise. Optimum calibrations were selected based on their low standard error of cross validation (SECV) values. Further, ratio of performance deviation, obtained by dividing the standard deviation of reference values by SECV values, was used to evaluate the reliability of predictive models. Our results showed that the NIRS method can predict chemical constituents accurately (correlation coefficient of cross validation, R2 cv, ranged from 0.76 to 0.97); the exception to this result was crude ash (R2 cv = 0.49 and RPD = 2.09). Comparison of mathematical treatments for raw spectra showed that second-order derivatives yielded better predictions than first-order derivatives. The best mathematical treatment for DM, ADF, and NDF, respectively was 2, 16, 16, whereas the best mathematical treatment for CP and crude ash, respectively was 2, 8, 8. The calibration models for fermentation parameters had low predictive accuracy for acetic, propionic, and butyric acids (RPD < 2.5). However, pH, and lactic and total acids were predicted with considerable accuracy (R2 cv 0.73 to 0.78; RPD values exceeded 2.5), and the best mathematical treatment for them was 1, 8, 8. Our findings show that, when fresh haylage is used, NIRS-based calibrations are reliable for the prediction of haylage characteristics, and therefore useful for the assessment of the forage quality.
        4,000원
        1 2 3 4 5