The structure and magnetic properties of composite powders prepared by ball milling a mixture of Fe2O3 ‧ (0.4-1.0)Fe were investigated. Hysteresis loops and differential scanning calorimetry (DSC) curves are used to characterize the materials and to examine the effect of the solid state reaction induced by ball milling. The results showed that a solid state reaction in Fe2O3 ‧ (0.4-1.0)Fe clearly proceeds after only 1 h of ball milling. The system is characterized by a positive reaction heat of +2.23 kcal/mole. The diffraction lines related to Fe2O3 and Fe disappeared after 1 h of ball milling and, instead, diffraction lines of the intermediate phase of Fe3O4 plus FeO formed. The magnetization and coercivity of the Fe2O3 ‧ 0.8Fe powders were changed by the solid state reaction process of Fe2O3 by Fe during ball milling. The coercivity of the Fe2O3 ‧ 0.8Fe powders increased with increasing milling time and reached a maximum value of 340 Oe after 5 h of ball milling. This indicates the grain size of Fe3O4 was clearly reduced during ball milling. The magnetic properties of the annealed powders depend on the amount of magnetic Fe and Fe3O4 phases.
In all geodisposal scenarios it is key to understand the interaction of radionuclides with mineral particles during their formation/recrystallisation. Studying processes at the molecular scale provides insight into long-term radionuclide behaviour. Uranium is a significant radionuclide in higher activity wastes destined for geological disposal, and iron (oxyhydr) oxides (e.g. goethite, -FeOOH). are ubiquitous in and around these systems, formed via processes including metal corrosion and microbially induced reactions. There are numerous reports of uranium-incorporation into iron (oxyhydr) oxides, therefore it has been suggested that they may be a barrier to uranium migration in geodisposal systems. However, long-term stability of these phases during environmental perturbations are unexplored. Specifically, U-incorporated iron (oxyhydr) oxide phases may interact with Fe(II) and sulphide from biological or geological origin. Firstly, electron transfer occurs between adsorbed Fe(II) and iron oxyhydroxides, with potential for changes in the speciation of incorporated uranium e.g. oxidation state changes and/or release. Secondly, on exposure to aqueous sulfide, iron (oxyhydr) oxides undergo reductive dissolution and recrystallisation to iron sulphides. Understanding the fate of incorporated uranium during these process in key to understanding its long term behaviour in subsurface systems. A series of experimental studies were undertaken where U(VI)-goethite was synthesized then reacted with either aqueous Fe(II) or S(-II), and the system monitored over time using geochemical analysis and X-ray absorption spectroscopy (XAS) techniques e.g. U LIII-edge and MIV-edge HERFD-XANES. Reaction with aqueous Fe(II) resulted in electron transfer between Fe(II) and U(VI)-goethite, with > 50% U(VI) reduced to U(V). XAS analysis revealed that U remained within the goethite structure, and electron transfer only occurred within the outermost atomic layers of goethite. which led to U reduction. Rapid reductive dissolution of U(VI)-goethite occurred on reaction with sulfide at pH7. A transient release of aqueous U was observed during the first day, likely due to uranyl(VI)-persulfide species. However, U was retained in the solid phase in the longer term. In contrast, the sulfidation of U adsorbed to ferrihydrite at pH 12.2 led to the immediate release of U (< 10% Utotal) associated with a colloidal erdite (NaFeS2·2H2O) phase. Moreover, in the bulk phase the surface of ferrihydrite was passivated by sulfide, and U was found to have been trapped within surface associated erdite-like fibres. Overall, these studies further understanding of the long-term behaviour of U-incorporated iron (oxyhydr)oxides supporting the overarching concept of iron (oxyhydr) oxides acting as a barrier to U migration.
Iron oxide (Fe2O3) nanoclusters exhibit significant potential in the biomedical and pharmaceutical fields due to their strong magnetic properties, stability in solutions, and compatibility with living systems. They excel in magnetic separation processes, displaying high responsiveness to external magnetic fields. In contrast to conventional Fe2O3 nanoparticles that can aggregate in aqueous solutions due to their ferrimagnetic properties, these nanoclusters, composed of multiple nanoparticles, maintain their magnetic traits even when scaled to hundreds of nanometers. In this study, we develop a simple method using solvothermal synthesis to precisely control the size of nanoclusters. By adjusting precursor materials and reducing agents, we successfully control the particle sizes within the range of 90 to 420 nm. Our study not only enhances the understanding of nanocluster creation but also offers ways to improve their properties for applications such as magnetic separation. This is supported by our experimental results highlighting their size-dependent magnetic response in water. This study has the potential to advance both the knowledge and practical utilization of Fe2O3 nanoclusters in various applications.
Spent nuclear fuels are temporarily stored in nuclear power plant site. When a problem such as cracking of spent nuclear fuel assembly or cladding occurs or uranium that has not been separated during the reprocessing remains, it is necessary to treat it. The borosilicate glasses have been considered to vitrify whole spent nuclear fuel assembly. However, a large amount of Pb addition was necessary to oxidize metals in assembly to make them suitable for oxide glass vitrifcation. Furthermore, these borosilicate glasses need to be melted at high temperatures (> 1,400°C) when UO2 content is more than 20wt%. Iron phosphate glasses can be melted at a relatively low temperature (< 1,300°C) even with a similar UO2 addition. A composition of iron phosphate glass for immobilization of uranium oxide has been developed. The glasses have glass transition temperatures of ~555°C that are high enough to maintain its phase stability in geological repositories. The waste loading of UO2 in the glass is ~33.73wt%. Normalized elemental releases from the product consistency test were well below the US regulation of 2 g/m2. Nuclear criticality safety and heat generation in deep geological repositories were calculated using MCNP and computational fluid dynamics simulation, respectively. The glass had effective neutron multiplication factor (keff) of 0.755, which is smaller than the nuclear- criticality safety regulation of 0.95. Surface temperature of the disposal canister is expected to lower than the limit temperature (< 100°C). Most of the U in the glass is in the 4+state, which is more chemically durable than the 6+state. As a result of long-term dissolution experiment, chemically-durable uranium pyrophosphate (UP2O7) crystals were formed.
This review summarizes the recent progress in iron-oxide-based heat generators. Cancer treatment using magnetic nanoparticles as a heat generator, termed magnetic fluid hyperthermia, is a promising noninvasive approach that has gained significant interest. Most previous studies on improving the hyperthermia effect have focused on the construction of dopant-containing iron oxides. However, their applications in a clinical application can be limited due to extra dopants, and pure iron oxide is the only inorganic material approved by the Food and Drug Administration (FDA). Several factors that influence the heat generation capability of iron-oxide-based nanoparticles are summarized by reviewing recent studies on hyperthermia agents. Thus, our paper will provide the guideline for developing pure iron oxide-based heat generators with high heat dissipation capabilities.
This study uses silicone monomer, DMA, crosslinking agent EGDMA, and initiator AIBN as a basic combination to prepare hydrogel lenses using fluorine-based perfluoro polyether and iron oxide and zinc oxide nanoparticles as additives. After manufacturing the lens using iron oxide nanoparticles and zinc oxide nanoparticles, the optical, physical properties, and polymerization stability are evaluated to investigate the possibility of application as a functional hydrogel lens material. As a result of this experiment, it is found that the addition of the wetting material containing fluorine changes the surface energy of the produced hydrogel lens, thereby improving the wettability. Also, the addition of iron oxide and zinc oxide nanoparticles satisfies the basic hydrogel ophthalmic lens properties and slightly increases the UV blocking performance; it also increases the tensile strength by improving the durability of the hydrogel lens. The polymerization stability of the nanoparticles evaluated through the eluate test is found to be excellent. Therefore, it is judged that these materials can be used in various conditions as high functional hydrogel lens material.
The ballasted flocculation effects of the mill scale and magnetite on activated sludge were investigated. Both ballasted flocculants (BF) could remarkably improve the sludge settleability in terms of zone settling velocity (ZSV) and sludge volume index (SVI). With the BF dosage of 0.2 to 2.0 g-BF/g-SS, the magnetite particles showed better efficiency on improving settling behavior of activated sludge than the mill scale due to higher surface area and hydrophobic property. The efficiency of SVI30 with magnetite injection was 2.5 to 11.3% higher than mill scale injection and that of the ZSV appreciated from 23.7% to 44.4% for magnetite injection. Averaged floc size of the BF sludge with magnetite dosage (0.5 g-BF/g-SS) was 2.3 times higher than that of the control sludge. Dewaterability of the sludge was also greatly improved by addition of the BF. The specific resistance to filtration (SRF) was reduced exponentially with increasing the dosage of BF. However, the BF’s particle size effect on the SRF looks to be marginal. Consequently, for improving the dewaterability, the BF played a physical role to remove the pore water of the biological flocs by intrusive attachment and a chemical role to induce aggregation of the flocs by charge neutralization.
가교된 단분산 폴리스티렌 비드를 유화 중합과 분산 중합으로 합성하였다. 가교된 폴리스티렌 비드를 자일렌과 iron pentacarbonyl로 팽윤시킨 후 옥틸 에테르와 함께 환류하여 iron pentacarbonyl을 산화철로 변환시켰다. 산화철의 화학 안정성을 향상시키기 위해 산화철을 포함하는 폴리스티렌 비드를 실리카로 코팅하였다. 소결로 폴리스티렌 비드를 제거하여 산화철을 포함하는 중공 실리카 비드를 얻었다. 전체 합성 과정에서 모든 비드의 크기와 형태는 균일하게 유지되었고, 산화철을 포함하는 중공 실리카 입자는 강한 자성을 보였다.
Graphene and Fe3O4 were bound by electrostatic attraction and prepared by effective reduction through microwave treatments. As a result of fabricating graphene with Fe3O4 as a composite material, it has been confirmed that it contributes to the structural improvement in graphene stabilization and at the same time, it shows improved electrochemical performance through improved charge transfer. It was also confirmed that the crystalline Fe3O4 was uniformly dispersed in the rGO sheet, effectively blocking the reaggregation due to the van der Waals interaction between the neighboring rGO sheets. The structural analysis of prepared composites was confirmed by transmission electron microscopy, and X-ray diffractometer. Electrochemical properties of composites were studied by cyclic voltammetry, galvanostatic charge–discharge curves, and electrochemical impedance spectroscopy. The Fe3O4 (0.4 M)/rGO composite showed a high specific capacitance of 972 F g−1 at the current density of 1 A g−1 in 6 M KOH electrolyte, which is higher than that of the pristine materials rGO (251 F g−1) and Fe3O4 (183 F g−1). Also, the prepared composites showed a very stable cyclic behavior at high current density, as well as an improvement in comparison with pristine materials in terms of resistance.
This study was carried out to investigate the characterization of iron oxide nanotubes (INTs) by anodization method and applied adsorption isotherms and kinetic models for phosphate adsorption. SEM analysis was conducted to examine the INTs surface formation. Further XRD and XPS analysis were performed to observe the crystal structure of INTs before and after phosphate adsorption. AFM analysis was conducted to determine of Fe foil surface before and after anodization. Phosphate stock solution for adsorption experiment was prepared by KH2PO4. The batch experiment was conducted using 20 ml phosphate stock solution and 40 cm3 of INTs in 50 ml conical tube. Adsorption isotherms were applied Langmuir and Freundlich models for adsorption equilibrium test of INTs. Pseudo first order and pseudo second order models were applied for interpretation of adsorption rate by reaction time. The determination coefficient (R2) values of Langmuir and Freundlich models were 0.9157 and 0.8876 respectively.