Advanced countries in the field of nuclear research and technology are currently examining the feasibility of deep geological disposal as the most appropriate method for the permanent management of high-level radioactive waste, with no intention of future retrieval. Deep geological disposal involves the placement of such waste deep underground within a stable geological formation, ensuring its permanent isolation from the human environment. To guarantee the enduring isolation and retardation of radionuclides with half-lives spanning tens of thousands to millions of years from the broader ecosystem, it is imperative to comprehend the long-term evolution of deep disposal systems, especially the role of natural barriers. These natural barriers, typically consisting of bedrock, encase the repository and undergo long-term evolutions due to tectonic movements and climate variations. For the effective disposal of high-level radioactive waste, a thorough assessment of the site’s long-term geological stability is essential. This necessitates a comprehensive understanding of its tectonic evolution and development characteristics, including susceptibility to seismic and magmatic events like earthquakes and intrusions. Furthermore, a detailed analysis of alterations in the hydrogeological and geochemical environment resulting from tectonic movements over extended time frames is required to assess the potential for the migration of radionuclides. In this paper, we have examined international evaluation methodologies employed to elucidate the predictive long-term evolution of natural barriers within disposal systems. We have extracted relevant methods from international case studies and applied a preliminary scenario illustrating the long-term evolution of the geological environment at the KURT (KAERI Underground Research Tunnel) site. Nevertheless, unlike international instances, the scarcity of quantitative data limits the depth of our interpretation. To present a dependable scenario in the future, it is imperative to develop predictive technologies aimed at comprehensively studying the geological evolution processes in the Korean peninsula, particularly within the context of radioactive waste disposal.
Solubility and species distributions of radionuclides in domestic groundwater conditions are required for the safety assessment of deep underground disposal system of spent nuclear fuel (SNF). Minor actinides including Am contribute significant extents to the long-term radiotoxicity of SNF. In this study, the solubility of Am was evaluated in synthetic groundwater (Syn-DB3), which were simulated for the groundwater of the DB3 site in the KAERI Underground Research Tunnel (KURT). Geochemical modeling was performed based on the ThermoChimie_11a (2022) thermochemical database from Andra to estimate the solubility and species distributions of Am in the Syn-DB3 condition. Dissolved Am concentrations in the Syn-DB3 were experimentally measured under oversaturation conditions. Am(III) stock solution in perchlorate media was sequentially diluted in Syn-DB3 to prepare 8 μM Am(III) in Syn-DB3. The pH of the solutions was adjusted to be in the range of 6.4–10.5. A portion of the samples was transferred to quartz cells for UV-Vis absorption and time-resolved laser fluorescence spectroscopy studies and the rest were stored in centrifuge tubes. The absorption spectra of the samples were monitored over 70 days and the results suggest that Am colloidal particles were formed initially in all the samples and precipitated rapidly within two days. Over the experimental period of 236 days, small volume (10 μL) of the samples in the centrifuge tubes were periodically withdrawn after centrifugation (18000 rpm, 1 hr) for the liquid scintillation counting to measure the concentrations of Am dissolved in Syn-DB3. In the end of the experiments, pH of the samples was checked again and the final dissolved Am concentrations were determined after ultrafiltration (10 kDa) to exclude the contribution of colloidal particles. In the pH range of 8-9, which is relevant to the KURT-DB3 groundwater condition, the measured dissolved Am(III) concentrations were converged to around 10-8 M. These values are higher than the solubility of AmCO3OH:0.5H2O(s), but lower than that of AmCO3OH(am). There was no indication of transformation of the amorphous phase to the crystalline phase in our observation time window.
A radioactive waste repository consists of engineered barriers and natural barriers and must be safely managed after isolation. Geologic events in natural barriers should be categorized and evaluated according to their magnitude to assess the present and future stability of disposal. Among the longterm evolutionary elements of natural barriers, faults are a small portion of the Earth’s crust. Still, they play an important role in nuclide transport as conduits for fluids moving deep underground. In addition, the physical and chemical properties of fault rocks are useful for understanding the longterm and short-term behavior of faults. Paleomagnetic research has been used extensively and successfully for igneous, metamorphic, and sedimentary rocks. In addition, magnetic characterization of fault rocks can be used to describe faults or infer the timing of major geological events along fault zones. Components of magnetization defined in fault-breccias were attributed to chemical processes associated with hydrothermal mineralization that accompanied or post-dated tectonic activity along the fault. The study of magnetic minerals in fault rocks can be used as “strain indicators”, “geothermometers”, etc. This study is a preliminary test of magnetic properties using fault gouges. Fault gouges are not well preserved in typical terrestrial environments. Access to fresh gouges typically requires trenching through faults or sampling with a core drill. Fortunately, it is a magnetic property study using a fault gouge that exists on the inner wall of KURT (KAERI Underground Research Tunnel). This is to identify the motion history of the fault and, furthermore, to understand the stress structure at the time of fault creation. In addition, it can be presented as evidence for evaluating faults that may appear in future URL (Underground Research Laboratory).
A methodology is under development to reconstruct and predict the long-term evolution of the natural barrier comprising the site of radioactive waste disposal. The natural barrier must protect the human zone from radionuclides for a long time. So for this, we need to be able to restore the evolution of the bedrock constituting the natural barrier from the past to the present and to predict from the present to the future. A methodology is being studied using surface outcrop, tunnel face of KURT (KAERI Underground Research Tunnel), and drill core at KAERI (Korea Atomic Energy Research Institute). Among them, drill core is an essential material for identifying deep geological properties, which could not be confirmed near the surface when considering the geological condition of the repository in the deep part. In this study, we selected several qualitative and quantitative analyses to construct a deep lithological model from the disposal perspective. These were applied to drill core samples around the KURT. There are the dikes presumed the Cretaceous were intruded by Jurassic granitoids in the study area. Analyzing trace elements of each rock type in the study area classified through geochemical characteristics and microstructure in previous studies made it possible to obtain qualitative information on the petrogenetic process. In addition, synthesizing the quantitative numerical age allows for grasping the evolution of bedrock, including intrusion and cutting relationships. LAICPMS was used for determining the age of zircons in plutonic rocks. The highly reliable 40Ar-39Ar method was selected for volcanic rocks because it can correct the loss of Ar gas and obtain the values of two types of Ar isotopes in a single sample. As a result, it was possible to infer the formation environment of rocks through anomalies in specific trace element content. And according to the numerical ages, it was possible to support the known separated rock type found in previous studies or to present a quantitative precedence relation for unclassified rocks. These methods could be applied to reconstruct the long-term evolution of bedrock within natural barriers.
In KAERI, a site descriptive model for stress field estimation had already been constructed by using integrated field data within KURT site scale. A sub-divided rock block domain containing major fracture zones has spatial rock mass and fault properties. The properties were decided based on the rock classification results of several borehole investigations. Modeling for maximum and minimum horizontal stress field estimation was performed and compared with the in-situ data. As a result, a depth-dependent stress ratio was adopted to obtain numerical results closer to actual in-situ data. Although the results were suitable at a relatively low depth (~500 m), there is still some deviation trend at a deep depth. This study aims to improve these modeling results by incorporating not only depth-dependent stress ratio but also changes in rock mass properties along the depth. The deep borehole of DB2 in the KURT site indicated fracture distribution corresponding to the property changes. Natural fractures are typically randomly oriented, and the fracture frequency decreases with increasing depth. The increase in P-wave velocity log data accompanies these features. A discrete fracture network (DFN) model can be used to simulate fractured rock explicitly, but DFN modeling is not feasible for site scale analysis because of its numerical efficiency. Therefore, as a preliminary model in this study, the effect of fracture distribution was considered by substituting the influence for the depth-dependent property. The properties were estimated from the fracture frequency and P-wave velocity log data. The influence of elastic modulus and density on the site stress field was dominant, with decreasing the deviation trend between modeling and in-situ data at a deep depth. Considering that the depth of the repository construction is within about 500 m, it may not be necessary to consider the change of rock properties with depth. However, it was determined that the rock property effect might need to be considered when the loading conditions change due to subsidence in the long-term evolution scenario. Continuously, this site descriptive modeling will be interdependently conducted with a representative DFN block model for deriving equivalent properties in fractured rock.
According to the continued generation of spent nuclear fuel, a reliable safety assessment is highly required with the precise modeling of the migration and retardation behavior of radionuclides to enhance public acceptance and hinder excessive conservativeness during the construction of the repository. In particular, the colloids formed in the repository-relevant condition are known to accelerate the migration of radionuclides. Thus, geochemical behavior and relevant characteristics of colloids are needed to be unambiguously clarified. The objective of the present work is to investigate the fundamental characteristics of colloids contained in the natural groundwater system by using various analytical methods and the tangential flow ultra-filtration (TFUF) system. The granitic groundwater sample from the DB-3 borehole at the KURT (KAERI Underground Research Tunnel) was taken by an airtight stainless steel cylinder coated on the inside with PTFE to prevent the infiltration of ambient air into the geologic groundwater sample. And then, the groundwater sample was transferred to the inert glovebox filled with Ar gas to monitor the pH and Eh equilibrium of the aqueous sample. For further investigation, the colloid contained in the groundwater sample was concentrated by using the TFUF system equipped with a membrane filter (pore size: 3 kDa). The concentrated groundwater sample was analyzed with various methods such as ICP-MS/OES, IC, DLS/ELS, FE-TEM/SEM-EDS, ATR-FTIR, TOC, LC-OCD, etc. In this study, the size of groundwater colloids was determined to be 182.3 ± 52.7 nm with the major constituents of C, S, O, Fe, Al, Si, etc. The amount of organic carbon and the concentrations of organic substances determined by means of the molecular weight fraction with the TOC and LC-OCD provide further detailed information for the colloids in the KURT groundwater sample. The results obtained in this study are expected to be used as preliminary experimental data for modeling the colloid-facilitated migration of radionuclides to improve the reliability of the safety assessment of the geologic repository.
The fundamental characteristics of groundwater colloids, such as composition, concentration, size, and stability, were analyzed using granitic groundwater samples taken from the KAERI Underground Research Tunnel (KURT) site by such analytical methods as inductively coupled plasma-mass spectrometry, field emission-transmission electron microscopy, a liquid chromatography-organic carbon detector, and dynamic light scattering technique. The results show that the KURT groundwater colloids are mainly composed of clay minerals, calcite, metal (Fe) oxide, and organic matter. The size and concentration of the groundwater colloids were 10–250 nm and 33–64 μg·L−1, respectively. These values are similar to those from other studies performed in granitic groundwater. The groundwater colloids were found to be moderately stable under the groundwater conditions of the KURT site. Consequently, the groundwater colloids in the fractured granite system of the KURT site can form stable radiocolloids and increase the mobility of radionuclides if they associate with radionuclides released from a radioactive waste repository. The results provide basic data for evaluating the effects of groundwater colloids on radionuclide migration in fractured granite rock, which is necessary for the safety assessment of a high-level radioactive waste repository.
The deep geological repository consisting of a multi-barrier system (engineered and natural barriers) is generally designed to isolate the high-level radioactive waste. The natural barrier is outermost portion to secure safety of the disposal. Crystalline rocks are considered for potential geological repository media to retard and inhibit the migration of radionuclides when the radionuclides leak from the canister and break through the engineered barrier. Sorption and diffusion processes play a major role in retardation of the radionuclides in deep underground environment. In order to evaluate the migration of radionuclides in the safety assessment or geochemical modelling, distribution coefficient and diffusivity of radionuclides are required as input data. In this study, we performed mineralogical and geochemical analysis for a crystalline rock (e.g., granite) to use the sorption and diffusion experiment. The fresh rock samples are obtained from a deep core samples (DB-2) drilled up to 1 km from the surface at KURT (KAERI Underground Research Tunnel) site. For the optical and microscopic examination, thin sections of the rock sample were provided. The rock samples were crushed into powder size to analyze major and trace elements of the whole-rock aliquots. The powdered specimens also used for mineral identification and measurement of specific surface area. The major constituent minerals of the granite are plagioclase, quartz, and K-feldspar and the minor minerals are phlogopite, biotite, and chlorite. According to the results of geochemical analysis, the granite specimens generally contain more than 70wt% of SiO2 and 8wt% of total alkali oxides (Na2O + K2O). The trace elements normalized to primitive mantle compositions show positive Cs, Rb, U, K, and Pb anomalies and negative Nb and Ti anomalies. The rock samples have an average density of 2.62 g·cm−3 and an average porosity of 0.222%. The crushed samples represent the specific surface area of 0.2087 m2·g−1 for the 75–150 μm fraction and 0.1616 m2·g−1 for the 150–300 μm fraction by BET method, respectively. The granite specimens will be used for the sorption and diffusion experiments to evaluate the radionuclides’ geochemical behaviors. The mineralogical and geochemical properties provided in this study can be useful in understanding the sorption and diffusion processes of significant radionuclides under the geological disposal environments.
Corrosion cells that simulates engineering barrier system have been stored in an aerobic KURT environment for 10 years, which were recovered and dismantled in 2021. The test specimens were compressed copper (Com. Cu), Cold spray copper (CSC Cu), Ti Gr.2, STS 304, and Cast nodular iron. The specimens were buffered by compact Ca-type Gyeongju bentonite (KJ-I) and compact Na-type Wyoming bentonite. And the corrosion cells were exposed to KURT groundwater at 30°C for about 10 years (3,675 days). As a result of the long-term experiment in aerobic environment, it was confirmed that Na-bentonite is more advantageous for inhibiting corrosion than Ca-bentonite. The corrosion thickness of the most specimens in Ca bentonite was slightly lower than in Na bentonite until the initial 500 days, but after 10 years, the corrosion thickness of copper and cast iron specimens in Na bentonite was clearly lower. The corrosion thickness of the copper specimen in Na bentonite was very low about 0.5 um in both Com. Cu and CSC Cu. Moreover, the corrosion thickness in Ca bentonite was very high about 4 um for Com. Cu and 6 um for CSC Cu. In the case of cast iron, the corrosion thickness in Na bentonite was about 13 um, and 15 um in Ca bentonite. The common feature of copper and cast iron specimens in Ca bentonite, which showed a high corrosion thickness, is the forming of a white mineral deposition layer on the specimen surface, which was presumed to be some kind of feldspar. On the other hand, it was found that the STS304 and Ti specimens were hardly corroded even after 10 years. In conclusion, when a white mineral deposition layer was formed on the specimen surface, the corrosion thickness always increased sharply than before, and thus it was estimated that the generation of the mineral deposition layer cause the increase of bentonite permeability, and rather the weakening of existing passive corrosion film.
Deep geological disposal with multiple barriers composed of engineered and natural barriers has been considered as the most suitable disposal method for high level nuclear wastes. In terms of the geological evaluation factors, brittle structures such as fractures and faults should be characterized around the repository site, because radionuclides transfer mainly with groundwater in the subsurface and groundwater flows through discontinuous brittle structures. The geological survey for the characterization of deep geological repository sites is widely conducted by narrowing the survey area from regional scale down to local scale, which could be divided into three steps: 1) using remote sense or geophysical survey, 2) trench and drill core logging including field survey based on the first step, 3) detailed geological survey in the tunnel. In this study, we analyzed the distribution of geological structures to derive the history of brittle deformation in and around the KURT (KAERI Underground Research Tunnel) site located in the KAERI (Korea Atomic Energy Research Institute). The bedrock of the KURT site is mainly consist of Jurassic two-mica granite, which is extensively intruded by andesitic dikes of Cretaceous with N-S to NE-SW strikes. The two-mica granite in the study area was deformed in a ductile deformation environment and has been overprinted by major geological structures such as faults, dikes, veins, and joints. From this study, we identified 8 brittle deformation events based on the cross-cutting relationship among the geological structures, which are obtained from the analyses in and around the KURT. In order to evaluate the reactivation and fluid flow potential of brittle structures, it is essential to determine the characteristics and ages of the brittle structures and the composed rocks around the site.