Smart factory companies are installing various sensors in production facilities and collecting field data. However, there are relatively few companies that actively utilize collected data, academic research using field data is actively underway. This study seeks to develop a model that detects anomalies in the process by analyzing spindle power data from a company that processes shafts used in automobile throttle valves. Since the data collected during machining processing is time series data, the model was developed through unsupervised learning by applying the Holt Winters technique and various deep learning algorithms such as RNN, LSTM, GRU, BiRNN, BiLSTM, and BiGRU. To evaluate each model, the difference between predicted and actual values was compared using MSE and RMSE. The BiLSTM model showed the optimal results based on RMSE. In order to diagnose abnormalities in the developed model, the critical point was set using statistical techniques in consultation with experts in the field and verified. By collecting and preprocessing real-world data and developing a model, this study serves as a case study of utilizing time-series data in small and medium-sized enterprises.
Korea's facility horticultural heating costs account for a high proportion. Therefore, it is the most important factor to consider in greenhouse construction. It is important to assess the heating load of greenhouses. But there is not much data from the weather station. This study determined the heating load for each segmented area using the spatial correction method. The heating degeneration calculated from standard weather data (AHDH and BHDH) and total weather data (CHDH and DHDH) is consistent. However, there was a big difference between AHDH and DHDH. Therefore, the updated heating load data for each region is needed. Each of the four types of set temperatures (8℃, 12℃, 16℃, 20℃) was provided, and the heating temperature setpoint (℃) for each region of 168 cities and counties was presented. As a result of the analysis, the reliability of about 99% was confirmed in most of the regions suggested in this study. By using the calculated heating load for each region, it is possible to predict and utilize energy consumption and management costs.
Application areas of floating marine structure systems have been increased with the development of power generation systems using renewable energy. Hence it is necessary to analyze the behavior of these floating systems for efficient design and operation. In this study, a computational analysis was performed to predict the characteristics of mooring lines load variation connected to a floating marine structure with waves. Pressure on the floating body and mooring lines load were analyzed with wave direction and height. The floating body stability severely decreased for 90° of the wave incident direction, and maximum load of the mooring lines increased with the height. These results are expected to be applicable for optimal design of the marine floating system.
PURPOSES : This study is to analyze the reduction effect on road pavement damage from the installation of weigh-in-motion systems used for overloaded vehicle enforcement, from the perspective of traffic assignment. METHODS : Fixed-demand multi-class traffic assignment was conducted by VISUM, a macroscopic traffic simulation software. We considered three vehicle classes and calculated the traffic load for each road link using the ESAL(Equivalent Single Wheel Load) factor, as proposed by ASHTTO(American Association of State Highway and Transportation Officials). We set up scenarios with weigh-in-motion installations in certain sections and observed how the traffic load changed before and after the installation of weigh-in-motion for each scenario. RESULTS : Three main trends were observed. Firstly, at points where weigh-in-motion systems were installed, traffic load significantly decreased even with the influx of cars and trucks following the restriction of overloaded trucks, highlighting the significant influence of overweight vehicles on the traffic load. Secondly, even when overweight vehicles detoured, there was no significant change in the overall network's traffic load. Lastly, the detour of overweight vehicles led to an increase in the total driving distance and time for all vehicles. CONCLUSIONS : Installing weigh-in-motion systems in sections with a lower structure number, which indicates thinner road pavement, can prevent damage in those specific areas without affecting the entire road network.
Special equipment used for snow removal is only used in the winter and must be moved into storage during non-winter seasons. However, when moving heavy equipment using a forklift within a limited space, safety accidents may occur due to deformation and damage due to the worker's limited visibility and excessive loading of heavy objects. In this study, the scissors boom of the developed heavy load transporter was conducted in two cases: link structural analysis and position-based structural analysis. In detail, the link structural analysis covers four cases of stress and safety factor according to material and thickness to optimize the specifications of the material selected during development, and the structural analysis according to position covers two cases before and after the lift, when maximum stress concentration is achieved. Safety was evaluated through finite element analysis. As a result of the study, when manufacturing a scissors boom type heavy load transporter that can withstand a load of 10 tons, the link showed safety at SS400 4.5mm or higher, and reinforcement is needed in the upper and lower structures, so it is judged to be useful in applying materials according to the load.
This study aims to evaluate the structural safety of a structural thermal barrier, installed inside the structure of a building and performed the role of a load-bearing element and an insulation simultaneously, contributing to the realization of net-zero buildings. To ensure the reliability of the analysis model, the analysis results derived from LS-DYNA were compared with the experimental results. Based on the results shown through the flexural experiment, the reliability of the thermal cross-section insulation structure model for slabs was validated. In addition, the effect of the UHPC block on the load support performance and its contribution to vertical deflection was verified.
본 연구에서는 KBC2022의 풍직각방향 변동풍하중 스펙트럼을 이용하여 풍직각방향 풍하중을 생성하고 생성된 풍직각방향 풍하 중이 작용하는 구조물의 비탄성 동적거동을 해석하는 프로그램을 개발하고자 한다. 풍응답은 일차 모드가 탁월하고 소성화에 의한 진동의 변화는 작고, 풍방향 진동과 풍직각방향 진동은 독립적이며, 비틀림 진동의 영향은 작다고 가정한다. 적용 구조물을 수평방향 의 단자유도 모델로 가정하고, 구조물의 질량을 집중질량으로 치환하여 상부에 작용시킨다. 비탄성 해석을 위한 이력모델은 이선형 모델을 적용한다. 강성비()와 항복점비()를 변수로 비탄성 동적응답을 분석한 결과 강성비가 일정한 경우에 항복점비가 증가할수 록 최대변위비는 감소하다가 최소값을 나타내고 증가하는 것으로 나타났다. 강성비가 0.5이상인 경우 최대변위비가 1이하가 되는 항 복점비가 존재하며, 이는 비탄성 내풍설계시 비탄성 거동을 허용하더라도 탄성설계된 건물보다 최대 변형이 감소함을 나타낸다.
This study deals with the maximum thermal load analysis and optimal capacity determination method of tank culture system for applying seawater source heat pump to save energy and realize zero energy. The location of the fish farm was divided into four sea areas, and the heat load in summer and winter was analyzed, respectively. In addition, two representative methods, the flow-through aquaculture system and the recirculation aquaculture system were reviewed as water treatment methods for fish farms. In addition, the concept of the exchange rate was introduced to obtain the maximum heat load of the fish farms. Finally, power consumption for heat pumps was analyzed in the view point of sea areas, tank capacity, and exchange rate based on the calculated maximum thermal load.
Existing reinforced concrete building structures constructed before 1988 have seismically-deficient reinforcing details, which can lead to the premature failure of the columns and beam-column joints. The premature failure was resulted from the inadequate bonding performance between the reinforcing bars and surrounding concrete on the main structural elements. This paper aims to quantify the bond-slip effect on the dynamic responses of reinforced concrete frame models using finite element analyses. The bond-slip behavior was modeled using an one-dimensional slide line model in LS-DYNA. The bond-slip models were varied with the bonding conditions and failure modes, and implemented to the well-validated finite element models. The dynamic responses of the frame models with the several bonding conditions were compared to the validated models reproducing the actual behavior. It verifies that the bond-slip effects significantly affected the dynamic responses of the reinforced concrete building structures.
초고층 건물에서 수평변위 제어와 수직부재에서 발생하는 부등축소에 대한 검토가 필수적이다. 이러한 부등축소는 비구조요소의 사용성과 구조요소의 안전성에 대해 문제를 야기할 수 있다. 따라서 이 연구에서는 120층 규모의 철근콘크리트 주거용 초고층 건물에 대해 시공단계해석을 수행하여 각 수직부재의 부등축소량을 비교하고 콘크리트의 장기거동의 영향을 분석하였다. 이를 위해 영향요 인에 따라 축소량을 탄성축소량, 크리프축소량, 건조수축축소량으로 구분하여 검토하였으며 최대 절대축소량에 대한 지배적 요인을 분석하였다. 또한, 입주완료 후 30년에서 발생한 부등축소량에 대해 사용성 검토를 진행하였으며, 구조요소에 대해 설계단계와 시공 단계의 부재력을 비교하여 분석하였다.
현재 우리나라에서 설계 및 시공되는 대부분의 철근콘크리트 벽식구조 공동주택은 상부벽체-하부골조 시스템으로 구성되어 있으며 서로 다른 상하부 구조시스템의 결합을 위해 전이보를 이용한다. 상부의 하중을 하부의 기둥 부재에 효율적으로 전달하기 위해 전 이보가 큰 강성을 지녀야하고 이로 인해 부재의 춤이 커져 많은 물량의 투입되고 전반적인 경제성이 떨어지게 된다. 이러한 문제점을 해결하기 위해 기둥을 벽체요소로 대체하고 일반적인 콘크리트 전이보에 비해 규모가 작은 경계보를 수평 구조요소로 활용한 새로운 경계보-벽체 시스템을 제안한다. 제안된 시스템의 축하중에 대한 성능 평가를 위해 3차원 비선형 유한요소해석을 수행하였다. 주요 설계변수로 상하부벽체 길이비, 경계보 부재의 전단보강근 간격, 하부벽체로 연속되는 상부벽체 수직근의 꺾임 비율, 슬래브 길이를 설정하고 제안된 시스템의 성능에 얼마나 기여하는지 분석하였다.
This paper is about the selection of the optimum position of the driving system and the analysis of the load at that position in order to safely drive an object with heavy load on the turret with a linear actuator. Usually, linear actuator is required the greatest force when first lifting or pushing a structure, and it is determined by the initial angle and positions. After all, the optimal position of the linear actuator in a limited turret space is closely related the required load and driving performance of the linear actuator. Therefore, this paper contains the contents of securing the driving stability and performance at optimum position on the turret by considering the two cases of linear actuator position arrangement.
타워형 집광태양열발전의 핵심요소인 헬리오스타트는 경량화를 통한 설비비 저감이 매우 중요한다. 반사판 면적 16m2의 기 존 헬리오스타트 대비 샌드위치 패널을 사용하여 무게를 50% 경량화한 헬리오스타트의 풍하중 평가를 수행하였다. 반사판이 수직, 45 도 경사인 경우에 대해 전산유체역학 해석을 하여 반사판에 작용하는 풍압을 산정하고 구조해석을 수행하여 최대응력의 발생부위 및 반사판의 변위에 의한 반사각도의 이격을 계산하였다. 45도 경사진 반사판이 바람이 불어오는 반대편으로 향한 경우가 바람을 마주보 는 배치보다 최대 풍하중이 더 크게 나타났으며, 반사판 풍하측으로의 유동박리에 의한 후류의 발달도 반사판의 배치에 따라 매우 상 이한 형태를 보였다. 경량화 모델의 경우 반사판 구동을 위한 기어의 배치를 변경하여 핵심 지지체인 기둥의 강성을 확보할 필요가 있 음을 확인하였다.
Vertical earthquake motions can occur along with horizontal earthquakes, so that Structure should be designed to resist Seismic loads in all directions. Especially, due to the dynamic characteristics such as the vibration mode, when the vertical seismic load, the dynamic response of the Spatial structure is large. In this study, the seismic response of the lattice dome to horizontal and vertical seismic loads is analyzed, and a reasonable seismic load combination is analyzed by combining horizontal and vertical seismic response results. In the combination of the horizontal seismic load, the largest result is obtained when the direction of the main axis of the structure coincides with the direction of seismic load. In addition, the combination of vertical seismic load and horizontal seismic load was the largest compared with the combination of horizontal seismic load. Therefore, it is considered that the most reasonable and stable design will be achieved if the seismic load in vertical direction is considered.
Prior to the experimental and production stages of the center pillar, a structural analysis must be carried out at the design stage. The commercial software for the structural analysis at the design stage provides benefits such as cost-effective and time economy. In this study, the structural analysis was performed to investigate the stress and displacement characteristics of the center pillar for five types of the applied loads using SolidWorks. The equivalent stress was relatively larger on the outside plate than the inside plate. The maximum equivalent stress according to the change of the applied loads increased linearly in the range of 47~181%. The deformation was larger at the upper end of the center pillar, and the maximum displacement was linearly increased in the range of 35~187%. The analysis results of the center pillar according to the applied loads show that the location and distribution of the maximum stress and displacement of the center pillar can be predicted.
In this study, the structural analysis was performed by using Solidworks program to investigate the stress and displacement characteristics of upper desk and table arm depending on the types and positions of load applied to the height-adjustable table(Cases 1, 2, 3, 4). The simulation was used to model the table and create the mesh for computational analysis. The height-adjustable table consists of three parts, upper desk, table arm and support body. Case 3 with the side concentrated load showed the maximum stress and maximum displacement at table arm and upper desk. From the stress and displacement characteristics of the upper desk and table arm, the stresses at the bending part of table arm and the deflection at the front part of upper desk were the greatest.
Spatial Structure has suffered from a lot of damage due to the use of lightweight roofs. Among them, the damage caused by strong winds was the greatest, and the failure of the calculation of the wind load was the most frequent cause. It provides that wind tunnel test is used to calculate the wind load. However, it is often the case that the wind load is calculated based on the standard of wind load in the development design stage. Therefore based on this, the structure type and structural system and member design are often determined. Spatial structure is usually open at a certain area. The retractable roof structure should be operated with the open roof in some cases, so the wind load for the open shape should be considered, but it is not clear on the basis of the wind load standard. In this paper, the design wind pressure of a closed and retractable roof structure is calculated by KBC2016, AIJ2004, ASCE7-10, EN2005, and the applicability of wind pressure coefficient is compared with wind tunnel test.