검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,844

        105.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Low alcohol (6%) wines were manufactured using Campbell Early. To develop the sterilization process of low alcohol wines, red wines were heat sterilized, and rose wines were nonthermal sterilized by concentration using potassium metasulfite and potassium sorbate. Samples were stored at 25℃ and quality characteristics were investigated by period. Results of this study revealed the pH of the samples after sterilization ranged from 3.15 to 3.19, and the total acidity of wines ranged from 0.011 to 0.024%. The free SO2 contents of wines ranged from 13.00 to 29.678 mg/L, and the total SO2 contents of wines ranged from 47.50 to 121.00 mg/L. L (lightness) of wines decreased whereas a (redness) and b(yellowness) increased. The hue value of wines ranged from 0.52 to 1.03, and decreased significantly(not including rose sweet wines). The color intensity of red and rose dry wines after sterilization increased, whereas red and rose sweet wines decreased. The DPPH radical scavenging activity of red wines and rose wines ranged between 75.50 to 89.23%, and 36.60 to 56.54%, respectively. The total polyphenol contents were 57.51~182.63 mg%. Results of this study provide scientific information to establish the sterilization process of low alcohol wines.
        4,000원
        106.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Although probiotics have been shown to improve health when consumed, recent studies have reported that they can cause unwanted side effects due to bacterial-human interactions. Therefore, the importance of prebiotics that can form beneficial microbiome in the gut has been emphasized. This study isolated and identified bacteria capable of producing biopoymer as a candidate prebiotic from traditional fermented foods. The isolated and identified strain was named WCYSK01 (Wissella sp. strain YSK01). The composition of the medium for culturing this strain was prepared by dissolving 3 g K2HPO4, 0.2 g MgSO4, 0.05 g CaCl2, 0.1 g NaCl in 1 L of distilled water. The LMBP(low molecular weight biopoymers) produced when fermentation was performed with sucrose and maltose as substrates were mainly consisted of DP3 (degree of polymer; isomaltotriose), DP4 (isomaltotetraose), DP5 (isomaltopentaose), and DP6 (isomaltoheptaose). The optimization of LMBP (low molecular weight of biopolymer) production was performed using the response surface methodology. The fermentation process temperature range of 18 to 32oC, the fermentation medium pH in the range of 5.1 to 7.9. The yield of LMBP production by the strain was found to be significantly affected by q fermentation temperature and pH. The optimal fermentation conditions were found at the normal point, and the production yield was more than 75% at pH 7.5 and temperature of 23oC.
        4,300원
        107.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, the experimental study was conducted using a multi-calorie meter, to investigate the cooling performance and cycle operation changes of the multi-heat pump (3 indoor units) for the low outside temperature in summer. The test temperature condition was the low cooling temperature, and the normal performance and dynamic behavior of 3 rooms, 2 rooms, and 1 room were measured to understand the operating characteristics of seven 7 indoor unit combinations. As a result of the experiment, the cooling capacity and COP of the multi-heat pump at low cooling temperature were about 10% and 6% higher than those of the cooling standard temperature. In addition, the dynamic behavior of the indoor units of 3 and 2 rooms was observed differently due to the load difference according to the indoor unit combinations and the non-uniformity of the refrigerant amount. And, when starting the heat pump, the compressor had a maximum peak value and stabilized by repeating the decrease and increase for each indoor unit combination.
        4,000원
        108.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the synthesis and gas sensing properties of bare and ZnO decorated TeO2 nanowires (NWs). A catalyst assisted-vapor-liquid-solid (VLS) growth method was used to synthesize TeO2 NWs and ZnO decoration was performed using an Au-catalyst assisted-VLS growth method followed by a subsequent heat treatment. Structural and morphological analyses using X-ray diffraction (XRD) and scanning/transmission electron microscopies, respectively, demonstrated the formation of bare and ZnO decorated TeO2 NWs with desired phase and morphology. NO2 gas sensing studies were performed at different temperatures ranging from 50 to 400 oC towards 50 ppm NO2 gas. The results obtained showed that both sensors had their best optimal sensing temperature at 350 oC, while ZnO decorated TeO2 NWs sensor showed much better sensitivity towards NO2 relative to a bare TeO2 NWs gas sensor. The reason for the enhanced sensing performance of the ZnO decorated TeO2 NWs sensor was attributed to the formation of ZnO (n)/ TeO2 (p) heterojunctions and the high intrinsic gas sensing properties of ZnO.
        4,000원
        109.
        2022.10 구독 인증기관·개인회원 무료
        In gamma-ray spectrometry for volume samples, the self-attenuation effect should be considered in the case of differences in chemical composition and density between the efficiency calibration source for quantitative analysis of sample and the sample actually measured. In particular, the lower the gamma-ray energy, the greater the gamma-ray attenuation due to the self-attenuation effect of the sample. So, the attenuation effect of low-energy gamma-rays in the sample should be corrected to avoid over- or under-estimation of its radioactivity. One of the most important factors in correcting the self-attenuation effect of the sample is the linear attenuation coefficient for the sample, which can be directly calculated using a collimator. The larger the size of the collimator, the more advantageous it is to calculate the linear attenuation coefficient of the sample, but excessive size may limit the use of the collimator in a typical environmental laboratory due to its heavy weight. Therefore, it is necessary to optimize the collimator size and structure according to the measurement environment and purpose. This study is to optimize a collimator that can determine the effective linear attenuation coefficient of low-energy gamma-rays, and verify its applicability. The overall structure of the designed collimator was optimized for gamma-ray energy of less than 100 keV and cylindrical plastic bottle with diameter of 60 mm and a height of 40 mm. The materials of optimized collimator consisted of tungsten. Acryl and acetal were used to form the housing of the collimator, which fixes the central axis of the bottle, collimator and point-like source. In addition, using the housing, the height of the tungsten is adjusted according to the height of the sample. For applicability evaluation of the optimized collimator, IAEA reference material in solid form were used. The sample was filled in the bottle with heights of 1, 2, 3 and 4 cm respectively. Using the collimator and point-like source of 210Pb (46.5 keV), 241Am (59.5 keV), and 57Co (121.1 keV), the linear attenuation coefficient and the radioactivity for the samples were calculated. As a result, to calculate the linear attenuation coefficient using the optimized collimator, a relatively high sample height is required. However, the optimized collimator can be used to determine the linear attenuation coefficients of low-energy gamma-rays for the self-attenuation correction regardless of the sample height. It is concluded that the optimized collimator can be useful to correct the sample selfattenuation effect.
        110.
        2022.10 구독 인증기관·개인회원 무료
        This study introduces the licensing process carried out by the regulatory body for construction and operation of the 2nd phase low level radioactive waste disposal facility in Gyeongju. Also, this study presents the experience and lessons learned from this regulatory review for preparing the license review for the next 3rd phase landfill disposal facility. Korea Radioactive Waste Agency (KORAD) submitted a license application to Nuclear Safety and Security commission (NSSC) on December 24, 2015 to obtain permit for construction and operation of the national engineered shallow land disposal facility at Wolsong, Gyeongju. NSSC and Korea Institute of Nuclear Safety (KINS) started the regulatory review process with an initial docket review of the KORAD application including Safety Analysis Report, Radiological Environmental Report and Safety Administration Rules. After reflecting the results of the docket review, the safety review of revised 10 application documents began on November 29, 2016. Total 856 queries and requests for additional information were elicited by thorough technical review until November 16, 2021. As the Gyeongju and Pohang earthquakes occurred in September 2016 and November 2017, respectively, the seismic design of the disposal facility for vault and underground gallery was enhanced from 0.2 g to 0.3 g and the site safety evaluation including groundwater characteristics was re-investigated due to earthquake-induced fault. Also, post-closure safety assessments related to normal/abnormal/human intrusion scenarios were re-performed for reflecting the results of site and design characteristics. Finally, NSSC decided to grant a license of the 2nd phase low level radioactive waste disposal facility under the Nuclear Safety Laws in July 2022. This study introduces important issues and major improvements in terms of safety during the review process and presents the lessons learned from the experience of regulatory review process.
        111.
        2022.10 구독 인증기관·개인회원 무료
        According to the ‘Regulations on the Delivery of Low and Medium Level Radioactive Waste’, Notification No. 2021-26 of the Nuclear Safety and Security Commission, a history of radioactive waste and a total amount of radioactivity in a drum are mandatory. At this time, the inventory of radionuclides that make up more than 95% of the total radioactivity contained in the waste drum should be identified, including the radioactivity of H-3, C-14, Fe-55, Co-58, Co-60, Ni-59, Ni-63, Sr- 90, Nb-94, Tc-99, I-129, Cs-137, Ce-144, and total alpha. Among nuclides to be identified, gamma-emitting nuclides are usually analyzed with a gamma ray spectrometer such as HPGe. When a specific gamma-ray is measured with a detector, several types of peaks generated by recombination or scattering of electrons are simultaneously detected in addition to the corresponding gamma-ray in gamma-ray spectroscopy. Among them, the full energy peak efficiency (FEPE) with the total gamma energy is used for equipment calibration. However, this total energy peak efficiency may not be accurately measured due to the coincidence summing effect. There are two types of coincidence summing: Random and True. The random coincidence summing occurs when two or more gamma particles emitted from multiple nuclides are simultaneously absorbed within the dead time of the detector, and this effect becomes stronger as the counting rate increases. The true coincidence summing is caused by simultaneous absorption of gamma particles emitted by two or more consecutive energy levels transitioning from single nuclide within the dead time of the detector. This effect is independent of the counting rate but affected by the geometry and absolute efficiency of the detector. The FEPE decreases and the peak count of region where the energy of gamma particles is combined increases when the coincidence summing occurs. At the Radioactive Waste Chemical Analysis Center, KAERI, samples with a dead time of 5% or more are diluted and re-measured in order to reduce the random coincidence summing when evaluating the gamma nuclide inventory of radioactive waste. In addition, a certain distance is placed between the sample and the detector during measurement to reduce the true coincidence summing. In this study, we evaluate the coincidence summing effect in our apparatus for the measurement of radioactive waste samples.
        112.
        2022.10 구독 인증기관·개인회원 무료
        In a nuclear power plant, the activated corrosion products are deposited on the reactor coolant system. The activated corrosion products must be removed to reduce the radiation exposure to workers before maintaining or decommissioning of the nuclear power plant. In order to remove the remove the activated duplex oxide layer generated on the reactor coolant system in the pressurized water reactor (PWR), the Cyclic SP (Sulfuric acid/Permanganate)-HyBRID (Hydrazine Based Reductive metal Ion Decontamination) process developed by KAERI (Korea Atomic Energy Research Institute) can be used. After applying the Cyclic SP-HyBRID process, a sulfate-rich waste powder containing the radionuclide is generated, and the radioactive powder has to be stabilized for final disposal. In the previous study, it was confirmed that the low-temperature sintering method can be applied to immobilize the sulfate-rich waste powder. Thus, immobilization of the Cyclic SP-HyBRID process waste powder was carried out by the low-temperature sintering method using a low melting point glass, and the physicochemical and radiological characteristics of a waste form were evaluated in this study. As a result, the compressive strength of the waste form increased with increasing sintering temperature and sintering time. It is considered that the result was caused by the difference in the band gap between the bismuth borate and zinc borate, which are the products during the sintering process. It was verified that the physical stability was maintained after the 107 Gy of irradiation test. In addition, it was confirmed that the radioactive metal hydroxides contained in the waste powder converted to metal oxide forms, which have the lower solubility, at the sintering temperature. Finally, the waste form was evaluated as a low-level radioactive waste from the concentration of radionuclides contained in the waste form.
        114.
        2022.10 구독 인증기관·개인회원 무료
        The liquid radioactive waste system of nuclear power plants treats radioactive contaminated wastes generated during the Anticipated Operational Occurrence (AOO) and normal operation using filters, ion exchange resins, centrifuges, etc. When the contaminated waste liquid is transferred to an ion exchanger filled with cation exchange resin and anion exchange resin, nuclides such as Co and Cs are removed and purified. The lifespan and replacement time of the ion exchange resin are determined by performing a performance test on the sample collected from the rear end of the ion exchanger, and waste ion exchange resin is periodically generated in nuclear power plants. In the general industry, most waste resins at the end of their lifespan are incinerated in accordance with related laws, but waste resins generated from nuclear power plants are disposed of by clearance or stored in a HIC (High Integrity Container). Plasma torch melting technology can reduce the volume of waste by using high-temperature heat (about 1,600 degrees) generated from the torch due to an electric arc phenomenon such as lightning, and secure stability suitable for disposal. Plasma torch melting technology will be used to check thermal decomposition, melting, exhaust gas characteristics, and volume reduction at high temperatures, and to ensure disposal safety. Through this research, it is expected that the stable treatment and disposal of waste resins generated from nuclear power plants will be possible.
        115.
        2022.10 구독 인증기관·개인회원 무료
        Korea Radioactive Waste Agency (KORAD), regulatory body and civic groups are calling for an infrastructure system that can more systematically and safely manage data on the results of radioactive waste sampling and nuclide analysis in accordance with radioactive waste disposal standards. To solve this problem, a study has been conducted on the analysis of the nuclide pattern of radioactive waste on the nuclide data contained in low-and intermediate-level radioactive waste. This paper will explain the optimal repackaged algorithm for reducing radioactive waste based on previous research results. The optimal repackaged algorithm for radioactive waste reduction is comprised based on nuclide pattern association indicators, classification by nuclide level of small-packaged waste, and nuclide concentration. Optimization simulation is carried out in the order of deriving nuclide concentration by small-packaged, normalizing drum minimization as a function of purpose, normalizing constraints, and optimization. Two scenarios were applied to the simulation. In Scenario 1 (generating facilities and repackaged by medium classification without optimization), it was assumed that there are 886 low-level drums and 52 very low-level drums. In Scenario 2 (generating facilities and repackaged by medium classification with optimization), 708 and 230 drums were assigned to the low-level and very low-level drums, respectively. As a result of the simulation, when repackaged in consideration of the nuclide concentration and constraints according to the generating facility cluster & middle classification by small package (Scenario 2) the low-level drum had the effect of reducing 178 drums from the baseline value of 886 drums to 708 drums. It was found that the reduced packages were moved to the very low-level drum. The system that manages the full life-cycle of radioactive waste can be operated effectively only when the function of predicting or tracking the occurrence of radioactive waste drums from the source of radioactive waste to the disposal site is secured. If the main factors affecting the concentration and pattern of nuclides are systematically managed through these systems, the system will be used as a useful tool for policy decisions that can prevent human error and drastically reduce the generation of disposable drums.
        118.
        2022.10 구독 인증기관·개인회원 무료
        Spent nuclear fuel still emits radionuclides and high heat that are dangerous to humans. In order to permanently isolate such spent nuclear fuel from human living areas, research is underway to construct a deep disposal system (500 m underground bedrock) consisting of natural and engineering barriers. In this study, plugs, which are engineering barriers consisting of disposal containers, buffer, backfill and plugs were investigated. The plug is one of the engineered barriers made of concrete to block the outflow of radioactive materials and the ingress of organisms, through the tunnel crosssection seals that are eventually discarded. General concrete leachate has a pH of 12.5 or higher and is highly alkaline, which induces dissolution of SiO2 components contained in the buffer and backfill. Dissolved SiO2 causes precipitation and cementation on the surface of the buffer and backfill, reducing performance. Therefore, the use of low-ph concrete is essential for deep, high-level waste disposal sites. Currently, Finland, Sweden, France, Switzerland, etc. have proposed low-ph concrete mix design and performance standards. For example, in Finland, cement, silica fume and fly ash are used as binders and the compressive strength is 50 MPa or more, and the leachate pH is 11 or less. In this research, test specimen fabrication and physical property tests (strength, pH) were performed based on mix design, proposed in Finland, Sweden, France and Switzerland. A cubic (50 mm×50 mm×50 mm) and a cylinder (Ø100 mm×200 mm) specimens were fabricated. Cubic and cylinder were made of mortar and concrete, respectively, depending on whether they included coarse aggregate. General concrete strength shows the characteristic that 70 to 80% of the 28th day of the second order appears on the 14th day of the second order and converges after the 28th day. As a result of mortar strength property evaluation, it increased by 30% from 90th to 28th. pH characterization was evaluated according to the powder dissolution method (ESL method) and leaching method (Leachate, EPA 1315) on cubic (mortar) and cylindrical (concrete) specimens, respectively. Mortar ph was measured at 9.78, a decrease of up to 20% from 90 days to 7 days. The physical property evaluation of concrete is currently underway and shows a trend of increasing strength and decreasing pH according to age. Consequently, we aim to present a low-ph concrete mix design for domestic highlevel radioactive waste disposal sites.
        119.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The "Super-Bus Rapid Transit" (S-BRT) standard guidelines recommend installing physical facilities to separate bus lanes, so as to remove possible conflicts with other traffic when using an existing road as an S-BRT route. Based on a collision simulation, we reviewed the protective performance and installation method of a low-profile barrier, i.e., one that does not occupy much of the width of the road as a physical facility and does not obstruct the driver's vision. METHODS : The LS-DYNA collision analysis software was used to model the low-profile barrier, and a small car collision simulation was performed with two different installation methods and by changing the collision speeds of the vehicle. The installation methods were divided into a fixed installation method based on on-site construction and a precast method, and collision speeds of 80 and 100 km/h were applied. The weight of the crash vehicle was 1.3 tons, and the segment lengths of the low-profile barriers were 2.5 and 4.0 m, respectively. The lowprofile barriers were modeled as precast concrete blocks, and the collision simulation for a fixed concrete barrier was performed by fixing the nodes at the bottom of the low-profile barrier. The low-profile barrier comprised a square cross-section reinforced concrete structure, and the segments were connected by connecting steel pipes with varying diameters to wire ropes. RESULTS : From comparing and analyzing the small car collision simulations for the changes in collision speeds and installation methods of the low-profile barrier, a significant difference was found in the theoretical head impact velocity (THIV) and acceleration severity index(ASI) for the 2.5-m barrier at a collision speed of 80 km/h. However, the differences in the installation method were not significant for the 4.0-m barrier. The occupant safety index with a collision speed of 80 km/h was calculated to be below the limit regardless of the installation method, and the length of the segment satisfied the occupant protection performance. At a collision speed of 100 km/h, when the segment length of the 2.5-m barrier was fixed, the THIV value exceeded the limit value; thus, the occupant protection performance was not satisfied, and the occupant safety index differed depending on the installation method. The maximum rotation angle of the vehicle, which reflects the behavior of the vehicle after the collision, also varied depending on the installation method, and was generally small in the case of precast concrete. CONCLUSIONS : Low-profile barriers can be installed using a fixed or precast method, but as a result of the simulation, the precast movable barrier shows better results in terms of passenger safety. Therefore, it would be advantageous to secure protection performance by installing a low-profile barrier with the precast method for increased safety in high-speed vehicle collisions.
        4,000원