검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 123

        61.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The influence of sulfate on the selective catalytic reduction of on the Ag/ catalyst was studied when was used as a reducing agent. Various preparation methods influenced differently on the activity. Among the methods, cogelation precipitation gave best activity. When sulfates were formed on the surfaces of samples prepared by impregnated and deposition precipitation, activity was enhanced as long as suitable forming condition is satisfied. The major sulfate formed in Ag/ catalyst was the aluminum sulfate and it seems that this sulfate acted as a promoter. When Mg was added to the Ag/ catalyst it promoted activity at high temperature. Intentionally added sulfate also enhanced activity, when their amount was confined less than 3 wt%.
        4,000원
        62.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for a direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenated blended fuel which has seven kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission have been investigated. Ethylene glycol mono-n-butyl ether(EGBE) contains oxygen component 27% in itself, and it is a kind of effective oxygenated fuel of mono-ether group that the smoke emission of EGBE is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in a diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and cooled EGR method.
        4,000원
        63.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the global warming problem, diesel engine is becoming an one of the most promising solutions for vehicles in the world. Compared to spark-ignition engines, diesel engines generally have lower unburned hydrocarbon and carbon monoxide, but they also produce still higher levels of NOx and smoke emissions even though using a common-rail injection system. To reduce the diesel emissions, DOC and DPF system have been developed to comply with tighten diesel emission regulations. This paper describes the NOx and smoke emission characteristics of current diesel vehicle with a post injection and plasma after-treatment system. Emissions tests were performed according to New European Driving Cycle mode. Results from these tests show that NOx and smoke emissions with Urea post injection and plasma treatment system is 72% lower than that without the system in the NEDC mode.
        4,000원
        65.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Effects of cooled and hot EGR(exhaust gas recirculation) on the characteristics of smoke and NOx emission have been investigated using a single cylinder, water-cooled, four cycle, DI diesel engine at several loads and speeds. In this study, a manually controlled EGR system was installed on a agricultural diesel engine which was operated at various operating system. And, the effects of hot EGR and cooled EGR on smoke and NOx emission were compared. The results showed that cooled EGR method was more effective than hot EGR method on smoke and NOx emission.
        4,000원
        67.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum tri-butoxide was mixed with the water/ethanol solution and then chloroplatinic acid was added to the solution. The solution was dried at 100℃ for 15hrs to remove the solvent and water then it was calcined at 500℃. The catalyst was activated with a gas mixture. During the activation, the temperature was increased from 150℃ to 500℃. The necessary amount of urea was dissolved in 50mL water and injected. Aqueous urea solution was then mixed with the feed gas stream. At low temperatures, nitrogen containing compounds of urea decomposition are used as reductants in the reducton of NOX. However at high temperatures the nitrogen containing compounds are oxidized to NO and NO2 by oxygen instead of being used in the reduction. The activity of the catalyst was dependent on urea concentration in the feed stream when there was not adequate water vapor in the feed. The maximum conversion was shifted from 250℃ to 150℃ when water concentration was increased from 2 to 17%. It seems that the maximum temperature shifts to lower temperatures because the hydrolysis rate of HNCO increases with water, resulting in higher amounts of NH3.
        4,000원
        72.
        1999.11 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 특수 설계된 연면방전(Surface discharge induced Plasma Chemical Process, SPCP) 반응기로부터 발생하는 플라스마에 의하여 일산화질소(NO)와 이산화질소(NO2)등 유해 환경오염 가스를 주파수, 유량, 농도, 전극재질 및 감은 횟수 등의 공정변수 변화에 따른 분해율, 소비전력 및 소비전압 등을 측정하여 최적의 공정조건과 최대의 분해효율을 얻고자 하였다. 표준시료로서 일산화질소와 이산화질소를 고전압발생기의 주파수(5~50kHz), 유해가스의 체류시간(1~10.5 초)과 초기농도(100~1000 ppm), 전극의 재질(W, Cu, Al), 전극의 굵기(1, 2, 3 mm)및 감은횟수(7회, 9회, 11회)에 대하여 플라스마 연면방전 반응기를 이용하여 분해효율을 구하였다. 유해가스(NO, NO2)의 분해제거 실험결과, 10 kHz의 주파수와 각각 19.8와 20 W의 소비전력에서 각각 94.3, 84.7 %로 가장 높은 분해제거율을 나타내었고, 20 kHz이상에서는 주파수가 커질수록 분해율이 감소하였다. 또한 연면방전 반응기에서 유해가스의 체류시간이 길수록, 그리고 초기농도가 작을수록 분해율은 증가하였다. 방전전극에 대한 영향은 전극의 굵기가 굵을수록 분해율이 증가하여 본 실험의 경우 3 mm의 전극을 사용하였을 때 가장 높은 분해율을 나타내었고, 전극의 재질은 텅스텐을 사용하여 방전한 경우에 가장 높은 분해율을 보였으며 구리, 알루미늄의 순으로 낮아졌다. 방전전극의 감은 횟수에 대한 영향은 7회, 9회, 11회의 순으로 감은 횟수가 많을수록 분해율이 높아짐을 알 수 있었다.
        5,700원
        74.
        1976.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate the relation of NOx emission and consumption rate in a direct injection diesel engine with a multihole nozzle under same fuel consumption and rpm, a naphthyl ethylenediaming method on NO, emission and Tektronix oscilloscop on the indicator diagrams have been used. Comparisons of the NOx emission and fuel consumption rate made on various conditions have led to the fllowing results. 1. The higher the injection pressure in the later injection time the lower NOx emission and the fuel consumption rate have been attained. 2. By the change of nozzle hole diameter under the same injection pressure, the NOx emission was much more lowered in the small diameter than large one, but fuel consumption rate was in inverse proption to the NOx emission. 3. The effect of injection spray angle, 1ndn on NOx emission, fuel consumption rate under same injection time and injection pressure was neglectable.
        4,000원
        75.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        The emission of nitrogen oxides has a great environmental impact. It leads to Los Angeles type smog, and it recently has attracted attention as a source of ultrafine dust. The main sources of nitrogen oxides are internal combustion engines and industrial boilers. These emission sources are processes that are essential for human industrial activities, so the regulation of original use is impossible. Therefore, special control methods should be applied to reduce NOx emissions into the atmosphere. In this study, we investigated how the supply of ER and urea influences the removal of nitrogen oxides from SRF combustion boilers. Experimental results show that the removal efficiency of nitrogen oxides can be up to 80% under the conditions of ER 2.0 and a urea feed of 0.5 LPM.
        76.
        2018.06 KCI 등재 서비스 종료(열람 제한)
        In this research, the target process was a modified type of a conventional aeration tank with four different influent feeding points and alternated aeration to obtain nitrogen removal. For more accurate switching of influent feeding, the process was operated under a designed control strategy based on monitoring of NH4-N and NOX-N concentrations in the tank. However, the strategy did have some limitations. For example, it was not sensitive to detecting the end of each reaction when losing the balance between nitrification and denitrification of each opposite part of biological tank. To overcome the limitations of the existing control strategy, a diagnosis-based control strategy was suggested in this research using the diagnosis results classified as normal (N), ammonia accumulation (AA) and nitrate accumulation (NA). Using the pre-designed rules for control actions, the aeration and volume of the aerated part of the reactor could be increased or decreased at a fixed mode time. In simulations of the suggested diagnosis-based control strategy, the NH4-N and NOX-N removal rates in the reactor were maintained at higher levels than those of the existing control strategy.
        77.
        2017.11 서비스 종료(열람 제한)
        런던협약에 따라 2012년부터 해양투기가 전면 금지 됨에 따라 가축사육과정에서 발생하는 가축분뇨 처리에 있어서 환경적, 경제적인 문제를 보완할 수 있는 효율적 처리기술이 필요하다. 최근 농가당 가축사육 머리수가 증가하고 있어 가축사육수는 급격하게 증가하며, 이로 인해 사육과정에서 발생되는 가축분뇨 발생량은 계속 증가할 전망이다. 가축분뇨는 가축사육 특성에 다라 저장・관리 방법에 따른 뇨와 분을 분리하여 발생하는 액상(Liquid Phase) 및 고상(Soild Phase)으로 구분되며, 분뇨가 세척수와 혼합된 상태로 발생하는 슬러리상(Slurry Phase)으로 구분하여 처리하고 있다. 처리하는 가축분뇨는 수분함량이 높은 경우 퇴비화 시 톱밥등의 수분조절재가 과다로 투입되어 경제성이 낮아지고, 수분함량이 낮은 경우에 액비화시 공정수의 추가 및 희석하는 공정을 별도로 설치해야 되는 경제적인 문제가 발생할 수 있다. 또한 환경공단 악취관리센터 보도자료(2016)에 의하면 2015년도 전국 악취 민원은 15,573건 발생하였으며, 이 중에 농축산시설의 악취민원수가 4,323건(28%)로 높은 비중을 차지하고 있다. 본 연구에서는 가축분뇨를 처리하기위해 환원제로 이용할 경우 실제 SNCR공정에서 상용되고 있는 환원제와 비교하여 NSR비에 따른 NOx의 특성을 알아보고자 하였다.
        78.
        2016.01 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate the emission characteristics of air pollutants from incineration facilities in Jeollanam-do. We selected 8 incineration facilities depend on type and the 19 items such as dust etc. were measured at the measurement hole for emission gas from air contamination control units. The range of emission concentrations for dust was 2.8 ~ 20.9 mg/Sm3 less than permissible air discharge standards. The results of 10 gaseous contaminants such as SOx was less than permissible air discharge standards. The range of emission concentrations for NOx was 13.4 ~ 120.0 ppm, less than permissible air discharge standards. As G facility was 112.4 ppm, 120.0 ppm, it exceeded emission standard (100 ppm) twice. The range of emission concentrations for HCl was ND ~ 85.300 ppm, B Facilitiy exceeded emission standard (20 ppm) as 85.300 ppm. The range of emission concentrations for NH3 was ND ~ 76.333 ppm, A, D, H Facility exceeded emission standard (30 ppm). The concentration of each facility was 42.416 ppm, 62.930 ppm, 76.333 ppm. The results of heavy metals (5 items) showed within emission standards. G facility is operating in condition that input of urea is 100 L/day. If input of urea were changed to 50 ~ 75 L/day, the operating cost of air pollution prevention facility can be reduced by 25% ~ 50%. In this study, the correlation between urea input and nitrogen oxides was statistically significant, but the correlation between urea input and ammonia showed insignificantly. Our research attempts to evaluate the emission characteristics of air pollutants from incineration facilities and to institute a reduction plan, an effective management of incinerators.
        79.
        2015.10 KCI 등재 서비스 종료(열람 제한)
        It is known that lowering of peak temperature of flame reduces NOx emission in combustion process. Low oxygenconcentration of diluted combustion air reduces peak flame temperature, but makes flame unstable. So increasing oftemperature of reactants is needed to enhance flame stability. Mixing of high temperature combustion gas with combustionair makes low oxygen concentration and increases air temperature simultaneously. Low oxygen concentration ofcombustion air reduces peak temperature of flame and increased air temperature makes flame stable by enhancement ofcombustion reaction. Special apparatus for recirculation of high temperature combustion gas should be needed, becausegeneral blower cannot be used to return the gas of almost 1,000oC. Air jet type recirculation apparatus has been developedand installed in a commercial scale of 7.2ton/day incinerator and estimated. Oxygen concentration and temperature ofair mixed with inhaled high temperature combustion gas by the apparatus are 16.24~17.78%, 384~512oC, respectively,in a steady state of incineration.
        80.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        This study analyzed response characteristics of Nitrogen Oxide according to injection location and change of injectionamounts by spraying food waste on the combustion platform and the latter part of the first combustion chambers inincinerators. The analytical results have found to have no major difficulties in keeping more than 850oC, the legal standardof the 2nd combustion chamber according to injection of food waste in all the test subject facilities. For spraying foodwaste in the combustion platform in the first combustion chambers, the removal efficiency of 14.76% was shown as NSRis 2.98. For spraying food waste in the latter part of the first combustion chambers, the removal efficiency of 46.40%was shown as NSR is 0.95. On the other hand, when food waste of 3 tons per hour respectively is sprayed on thecombustion platform and the latter part of the first combustion chambers, the highest removal efficiency of 84.97% wasshown as NSR is 1.02.
        1 2 3 4 5