This study aims to discuss measures to combat climate change pertaining to the waste sectors in the EU and Japan.The EU aims to secure 20% of its total energy consumed from renewable sources and to reduce the emission of greenhousegases by 20% by 2020. This study investigated the amount of waste-based energy produced and confirmed that it makesa significant contribution to renewable energy sources. The amount of energy produced differs according to the type ofwaste utilized and the size (population) of the country and these factors should be taken into account when establishingresponse measures. In Japan, policies have been introduced to promote the recovery of energy and to reduce the greenhousegases emitted by incinerators. In particular, the country has been promoting a high level of efficiency by differentiatingthe government subsidy funding according to the energy recovery rate. This study confirmed that the utilization of wasteresource energy has made a significant contribution to reducing the emission of greenhouse gases in the member countriesof the EU and in Japan. Korea needs to establish similar policies to increase the contribution of energy from wasteresources in the future.
There is legal uncertainty and ambiguity with regards to the classification and disposal of sludge generated from glassetching process. Moreover, secondary effect on the environment such as corrosion of landfill construction by the sludgeproduced in glass etching process was observed in waste landfill site. As part of response to the parliament’s request forthe relevant data and local media coverage, exhaustive investigation of glass etching process was required. Accordingly,we conducted an exhaustive investigation of 8 glass etching manufacturers. Glass etching business is one of the businessesthat have seen rapid growth since 2010 with the development of semiconductor and electronics industry, and glass etchingproducers are mostly located in Gumi, Cheongju, Sejong, Gongju, and Cheonan cities. In this study, we investigated theharmful effects of wastes generated from the glass etching process, how those wastes are classified and treated, problemsarose from the process, and secondary effects on the environment observed in waste landfill site. The study found thatcyanide, lead, mercury, trichloroethene, and perchloroethene were not detected in the sludge produced from glass etchingprocess, and hexavalent chromium, copper, and arsenic were either not detected or reported at very low level, which wasbelow the threshold concentration level of designated waste. In contrast, pH of sludge produced from glass etching processwas between 1.7 and 2.3, pH of hydrofluoric acid used for glass etching showed acidic value of 1.5, which suggests thatthe classification system of such hazardous substance requires reconsideration.
Volatile Organic Compounds in Urban Atmosphere are contributing largely at significant risks to human health andhave caused serious problems such as ozone formation. This study is to identify the effects of DRE (destruction andremoval efficiency) and carbonization of styrene when using the electron beam energy. The irradiation intensity of electronbeam energy was 1mA, 5mA and irradiation time were 5sec and 10sec. The styrene was completely destroyed at 5mA.Main by-products was aerosol particles. Aerosol particle formation was increased with increasing irradiation intensity.Most of the by-products of particle were carbon.
With a growing concern of greenhouse gas (GHG) emissions due to climate change, many activities and efforts onthe greenhouse gas reduction have been implemented in solid waste sectors. Since recycling is the major managementoption for solid waste in Korea, it is important to estimate the reduction of the greenhouse gas emission during recyclingprocesses. In this study, two common methodologies, Prognos method of EU and waste reduction model (WARM) methodof USA, have been critically reviewed and compared to estimate the reduction for recycling of waste paper in terms ofsystem boundary, recycling processes, and emission factors. As a common point of two methodologies, the reductionfactors for the paper recycling have been developed by subtracting the recycled product emissions from the virgin productemissions to get the greenhouse gas savings. While the recycling losses and transportation are considered in twomethodology development, there are a number of differences between the methodologies in system boundary,transportation distance and forest carbon sequestration. As a result, it caused the difference in final greenhouse gasreduction factor of paper recycling. The reduction factor was −820kgCO2eq/ton in Prognos method, while −3,891kgCO2eq/ton was found in the WARM method. When both methods were applied to recycling of waste paper in Korea,the greenhouse gas reductions by the Prognos method and the WARM method were found to be 3,485.2tCO2eq/day and2,248.8tCO2eq/day, respectively. When the carbon sequestration by forest is considered in the WARM method, thereduction rate was estimated to be 16,538.3tCO2eq/day. The main reasons for such difference can be attributed to systemboundary and forest carbon sequestration. Especially, forest carbon sequestration can be an important factor in Korea thatusually manufactures papers from imported pulp from abroad. This study implies that the applications and results of bothmethods to estimate greenhouse gas reduction by waste recycling should carefully reviewed and acknowledged beforeuse due to the different assumptions and results that are anticipated.
Phospho-gypsum (PG) is a by-product generated from wet process of phosphoric acid production. The recycling rateof PG is only fifteen percents for the recycling uses, such as cement retardant, gypsum board, plaster, functional fertilizer.In the result of pH analysis, PG, neutralizing gypsum, soil, and dredged soil were 3.5, 7.4, 8 to 8.8, and 7.8, respectively.In case of the electric conductivity (EC), PG, neutralizing gypsum, and soil were 2,990µS/cm, 2,230µS/cm, and84~99µS/cm, respectively. In heavy metal contents of PG, As and Cd could be measured under environmentalstandards in Korean Soil Environment Conservation Act. In inorganic elements of leaching PG, Ca and Na were 629mg/L and 13 mg/L, respectively, but As, Cd, and other elements were detected under the regulated levels in Korean WasteManagement Act. Also, among inorganic elements in PG, the leaching ratio of Mg and Cd were 7.3%, 1.3% respectively.In neutralized PG, leaching ratio of Mg and Cu were 1.9%, 1.4% respectively compared with other elements. Insequential batch leaching test, the leaching concentrations of As and Cd were rapidly decreased after 2 days. F− andCa were steadily decreased until 2 days and 8 days, respectively, and no more change since then. In case of SO42−, itfell at constant rate to 1,600~1,800mg/L. As seen in Ca leaching curve relating to pH value, the leaching decreasedwith increasing pH.
The composting characteristics of BM sludge and the control sludge were compared. Feasibility of using coffee groundsas a bulking agent was examined, along with sawdust. It was observed that composting of BM sludge had a faster rateof reaction than with the control sludge, and higher temperatures were reached. When using coffee grounds as a bulkingagent, the caffeine in the coffee seemed to absorb the odors, allowing a composting with almost no odors. Moreover,when coffee grounds used as the bulking agent, total organic matter content increased by approximately 17% over sawdust,while total nitrogen increased by 49%, and available phosphorus by approximately 3%.
This study was conducted to evaluate effects of chopped and non-chopped rice straw on characteristics of silage-basedtotal mixed ration (TMR) according to the particle size, laceration, and in situ dry matter (DM) degradation. The threerice straw silages as low moisture unchopped (LMUC; 32.75% of moisture, unchopped), high moisture unchopped(HMUC; 42.05% of moisture, unchopped), and high moisture chopped (HMC; 44.71% of moisture, chopped to 30cmlengths) were tested. Samples were collected at every 5 minutes from 10 min of pre-mixing to 50 min. The percentageof >19mm in LMUC and HMC was decreased to 7.23% and 7.74% (p<0.05), respectively, and the percentage of 8mm>was increased to 5.81% and 5.24%, respectively. Furthermore, the laceration of forage by a TMR mixer showed that therewas little change in the reduction of 1.26% in HMC, but was reduced to 7.53% and 16.06% in LMUC and HMUC,respectively. The peNDF>8 was maintained 17~18.5% of the optimal requirement level for 15 to 45 min mixing in LMUCand for 30 to 50 min mixing in HMC, but it exceeded the level of peNDF>8 in the range of 21.49 to 22.53% for 50minmixing in HMUC. However, ruminal in situ DM degradation appeared as LMUC>HMUC>HMC. Therefore, theseresults suggest that the rice straw silage may be useful for high-yielding lactating cows, if it can be supplied with theadequate peNDF, and the limiting factor on DMI and DM degradation was reduced by crushing of the plant tissue, althoughthe rice straw silage was concerned to low quality forage.
The objective of this paper is to assess the applicability of heat recovery at aerobic landfill as a geothermal heat source.This paper presents a case study of installing gas source heat recovery system at an aerobic landfill to collect landfillgas heat. The system consists of three subsystems, i.e., the air injection system including a biofilter, the heat pump systemand the thermal storage tank. A biofilter is necessary to remove the content of harmful compounds in the gas that entersthe heat pump. The field test results showed that temperature for landfill gas was increased slightly from 29 to 38oC inthe phase of aeration because of decomposition of organic carbon. The biofilter effectively treated CH4, H2S and NH3in the gas to prevent the corrosion of the heat pump. The coefficient of performance (COP) of the heat pump was 3.2,which means that 3.2kW of heat energy could be obtained by 1kW of electrical energy used for the heat pump. Thisstudy estimated the energy cost for the different heating systems. As a result, the heat pump can reduce the energy costby 75% compared with kerosene and diesel. Therefore, it is concluded that aerobic landfills are a suitable resource forheat recovery.
Flood disaster generates large amounts of flood wastes and it is rarely well-treated due to the heavy amount of wastes.Therefore the prediction of flood waste generation and making a plan for appropriate treatment have been required.Targeting for Seoul city, we investigated the history of flood disasters and the number of flooded buildings, and conductedregression analysis between the number of flooded buildings and rainfall data. As a result, daily average rainfall andmaximum daily rainfall showed better correlations with the number of flooded buildings than total rainfall data. As aresult of verification on the official unit of flood waste generation, 1.35ton/flooded building, it was reliable data for totalSeoul city, but not for regional units (gu). Finally, using regression equation and the official unit of flood waste generation,we suggested the method to predict flood waste generation by rainfall. For more reliable prediction, it is necessary toaccumulate more regional data about the number of flooded buildings, building types, and topographic conditions dueto a wide regional deviation.
A total of 15 different solid waste materials were analyzed for toxic substances such as Pb, Cd, Cu, As, Hg, Cr (VI)by the Korean standard leaching test and as total content. These wastes were also tested for corrosivity characteristicsusing an ionic electrode for pH and a circular steel for corrosion rate. Based on the results of the leaching test, the solidwaste samples did not exceed the regulated leaching levels. Thus, the analyzed wastes may be classified and managedas general industrial waste, not hazardous waste. Four solid waste samples were greater than total content levels proposedby other previous study. In case of the corrosive property of the solid waste leachate (1:2.5), the highest pH of the wastesample exhibited the lowest corrosion rate of 0.065mm/yr. However, the waste samples with low pH values exhibiteda greater corrosion rate. It is difficult to determine the correlation between pH and corrosion rate of the solid waste leachate.Therefore, the testing of the solid wastes are needed to further investigate the corrosion of a glass electrode method ratherthan the corrosion rate measurement. In the future, other hazardous properties such as ecotoxicity should be also examinedto properly manage the solid waste materials.
It is known that lowering of peak temperature of flame reduces NOx emission in combustion process. Low oxygenconcentration of diluted combustion air reduces peak flame temperature, but makes flame unstable. So increasing oftemperature of reactants is needed to enhance flame stability. Mixing of high temperature combustion gas with combustionair makes low oxygen concentration and increases air temperature simultaneously. Low oxygen concentration ofcombustion air reduces peak temperature of flame and increased air temperature makes flame stable by enhancement ofcombustion reaction. Special apparatus for recirculation of high temperature combustion gas should be needed, becausegeneral blower cannot be used to return the gas of almost 1,000oC. Air jet type recirculation apparatus has been developedand installed in a commercial scale of 7.2ton/day incinerator and estimated. Oxygen concentration and temperature ofair mixed with inhaled high temperature combustion gas by the apparatus are 16.24~17.78%, 384~512oC, respectively,in a steady state of incineration.
Recently, it is a critical issue for Korea that Metropolitan Landfill site life extension was in crisis contrast for localresidents and local governments. In Europe and Japan, the generation of waste and landfills were suppressed and theyintroduced the MBT facility in order to increase the recycling and energy recovery. In this study, the process of domesticMBT facilities were evaluated by the physical and chemical composition, calorific value and biomass content, the aerobicbiodegradation of biodegradable waste by comparing and analyzing each step through the evaluation. Both organic residuesand inorganic residues carbon content discharged from the MBT analysis, moisture content, calorific value of residues didnot meet solid refuse fuels quality standards. While the biomass content and aerobic biodegradation higher than standardbiodegradable waste landfill in Europe. Biodegradable organic residue selected from domestic solid fuel manufacturingfacility is expected to be able to manage through the biomass content and biological stability analysis. Based on the resultsof future research it is needed to review the criteria and additional landfill energy recovery by incineration residues.