Baicalin, a flavonoid isolated from Scutellaria baicalensis, has anti-inflammatory, antioxidant, and neuroprotective effects. Glutamate is a major neurotransmitter that plays an important role in brain function, but excessive release of glutamate causes excitotoxicity and damages cells. We investigated the neuroprotective effects of baicalin in glutamate-exposed neurons. The mouse hippocampal neuronal cell line (HT22) was cultured in a general manner, glutamate and/or baicalin were treated on the cells. Baicalin was administered 1 hr before glutamate treatment. Cells were collected 24 hr after glutamate, and cell viability was measured using MTT assay. Reactive oxygen species (ROS) and lipid peroxidation (LPO) assays were performed to measure oxidative stress. Glutamate reduced cell viability in a dose- and time-dependent manner. MTT assay showed that baicalin treatment ameliorated the decrease in cell viability due to glutamate toxicity. The effect of baicalin is dose-dependent. Glutamate caused severe nerve damage, including condensation of the cell shape, loss of dendrites and axons. However, baicalin treatment attenuated these morphological changes, and the effect of baicalin was dose-dependent. ROS and LPO analyses showed that glutamate increases oxidative stress, and baicalin attenuates this change due to glutamate toxicity. The effect of baicalin on these results was dose-dependent. We confirmed that baicalin performs an antioxidant function against glutamate toxicity in neurons. In conclusion, these results suggest that baicalin exerts neuroprotective effects on damaged neurons through antioxidant activity.
The aim of this study is to investigate the habituation phenomenon of essential oils as potential feeding deterrents in agricultural practices and their associations with taste receptors. Non-choice tests and contact-fumigation bioassays were conducted to determine the feeding deterrency and insecticidal activity of 30 commercial oils on the third instar larvae of the tobacco cutworm. The results indicated that lemongrass, fennel sweet, and clove bud oils had the highest feeding deterrency in that order, and no direct correlation between insecticidal activity and feeding deterrency was observed. To validate the habituation phenomenon, larvae were exposed to the three abovementioned oils at a 1 mg/g for 48 h, then a choice assay was conducted. It showed a significant reduction in both feeding deterrence and repellency in all cases. Similar reductions in feeding deterrence were observed when individuals exposed to the main components of the three oils: citral&limonene, anethole, and eugenol. Additionally, the oil mixture of fennel sweet and clove bud exhibited the most significant synergistic effect on feeding deterrency, suggesting a relatively slower habituation process. This reduction in feeding deterrence is presumed to be due to desensitization of the larval taste sensory organs, including the maxillary palp, lateral styloconica, and medial styloconica. Further research will be conducted to investigate the specific mechanisms and spike activity associated with these sensory organs using electrophysiological study.
Aralia elata, Chaenomeles sinensis fruit, and Glycyrrhizae radix have been widely used as oriental medicinal plants in Korea, China and Japan and found to possess anti-oxidative and anti-inflammatory activities. The current study was conducted to investigate the neuroprotective effect of an ethanol extract of a mixture of A. elata, C. sinensis fruit, and Glycyrrhizae radix (ACG) against ischemia-induced brain injury in rats and excitotoxic and oxidative neuronal death in primarily cultured rat cortical neurons. Transient focal cerebral ischemia was induced by 2 h middle cerebral artery occlusion followed by 24 h reperfusion (MCAO/R) in rats. Oral administration of ACG (10, 25, and 50 mg/kg) 30 min before MCAO, after 1 h of MCAO, and after 1 h of reperfusion reduced MCAO/R-induced brain infarct and edema formation. ACG also inhibited development of behavioral disabilities in MCAO/R-treated rats. Exposure of cultured cortical neurons to 500 μM glutamate for 12 h resulted in neuronal cell death. ACG (1, 10, and 50 μg/mL) inhibited glutamate-induced neuronal death. Furthermore, ACG inhibited 100 μM hydrogen peroxide (H2O2)- and hypoxia-induced neuronal death. These results suggest that the neuroprotective effect of ACG against ischemia-induced brain damage might be associated with its anti-excitotoxic and anti-oxidative activity and that ACG may have a therapeutic role for prevention of neurodegeneration in stroke.
난황형성과정(Vitellogenesis)은 발달하는 난모세포에 난황이 축적되는 과정으로, 이 과정의 개시는 알형성과정(oogenesis)을 제어하는 주 요 메커니즘이다. 곤충생리학 모델인 노랑초파리(Drosophila melanogaster)에서 난황형성과정은 성충으로 우화한 직후 시작하여 성적 성숙이 일어 나는 2-3일간 지속된다. 성숙한 난모세포가 충분히 만들어지고 성적 성숙이 종료되면, 짝짓기 후 알형성과정이 다시 시작될 때까지 난황형성과정은 멈춘다. 수컷 초파리의 정액 단백질인 성 펩타이드(Sex peptide, SP)는 짝짓기의 신호로서 알라타체(corpora allata)를 자극해 유약호르몬 (Juvenile hormone, JH) 생합성 및 분비를 유도하며, 혈림프(hemolymph) JH 농도의 증가는 난황형성과정을 자극한다. 최근 연구 결과에 따르 면, SP수용체 뉴런은 자궁 내막의 수상돌기를 통해 교미 중 정액과 함께 자궁으로 전달된 SP를 감지함으로써, 축삭돌기를 통해 중추신경계인 복부 신경절에 짝짓기 신호를 보내는데, 이러한 중추신경계 SP 신호가 JH 생합성 및 분비, 그리고 난황형성과정을 유도하는 것으로 밝혀졌다. 짝짓기 후 암컷에서의 난황형성과정은 일주기 리듬을 보이는데, 노랑초파리의 일주기 리듬은 중추 신경계 뉴런들에 의해 제어된다. 본 종설은 성적 성숙, 짝짓기 신호, 그리고 일주기 리듬에 따라 난황형성과정을 제어하는 신경 메커니즘에 관한 최근 연구 성과를 다룬다.
본 연구에서는 가물치(Channa argus) 추출물의 신경세포 분화와 산화 스트레스에서의 효능을 분석하기 위하여 녹차와 효소를 이용한 다양한 추출 방법(상온 추출물, RE; 녹차 상온 추출물, GRE; 효소 상온 추출물, ERE; 녹차 효소 상온 추출물, GERE)을 사용하여 제조 된 추출물의 아미노산 조성과 항산화 활성을 비교 분석하였고, 신경성장인자 (NGF) 유도 신경세포 분화 및 과산화수소 처리에 의해 유도된 PC12 세포 독성에 대한 보호효과를 규명하고자 하였다. 총 아미노산 함량은 RE 및 GRE보다 효소 추출물인 ERE 및 GERE에서 훨씬 더 높았다. 효소 가수 분해물 (ERE 및 GERE)에서 ABTS 라디칼 소거 활성은 RE 및 GRE보다 높았다. 또한, RE와 ERE는 PC12 세포에서 neuronal growth factor (NGF) 매개 신경 돌기 성장뿐만 아 니라 growth associated protein (GAP)-43 및 synapsin-1의 발현을 현저하게 향상 시켰다. 과산화수소(H2O2)에 의해 손 상된 PC12 세포에 4가지 유형의 Channa argus 추출물을 첨가한 후 PC12 세포의 생존율을 측정하였다. PC12 세포 의 생존율은 RE, GRE, GERE에서 각각 77.5±1.9%, 84.0±0.8%, 81.1±0.9%이였다. 이러한 세포 생존율은 H2O2 만을 처리 한 음성 대조군(70.0±2.0%)에 비해 더 높았다. H2O2 처리에 의해 유도 된 세포 독성도 RE, GRE 및 GERE 처리에 대한 반응으로 상당히 완화되었다. 종합하면, Channa argus 추출물은 산화 스트레스와 신경 손상을 감소시키는 기능성 물질로 유용하다는 것을 시사하며, 향후 이들 소재를 활용한 다양한 기능성 제품의 개발이 필요할 것으로 판단된다.
Alpha-lipoic acid (ALA) is a naturally occurring antioxidant and has been previously used to treat diabetes and cardiovascular disease. However, the autophagy effects of ALA against oxidative stress-induced dopaminergic neuronal cell injury remain unclear. The aim of this study was to investigate the role of ALA in autophagy and apoptosis against oxidative stress in the SH-SY5Y human dopaminergic neuronal cell line. We examined SH-SY5Y phenotypes using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (cell viability/proliferation), 4′,6-diamidino-2-phenylindole dihydrochloride nuclear staining, Live/Dead cell assay, cellular reactive oxygen species (ROS) assay, immunoblotting, and immunocytochemistry. Our data showed ALA attenuated hydrogen peroxide (H2O2)-induced ROS generation and cell death. ALA effectively suppressed Bax up-regulation and Bcl-2 and BclxL down-regulation. Furthermore, ALA increased the expression of the antioxidant enzyme, heme oxygenase-1. Moreover, the expression of Beclin-1 and LC-3 autophagy biomarkers was decreased by ALA in our cell model. Combined, these data suggest ALA protects human dopaminergic neuronal cells against H2O2-induced cell injury by inhibiting autophagy and apoptosis.
Glial cells, including astrocytes and microglia, interact closely with neurons and modulate pain transmission, particularly under pathological conditions. In this study, we examined the excitability of substantia gelatinosa (SG) neurons of the spinal dorsal horn using a patch clamp recording to investigate the roles of microglial activation in the nociceptive processes of rats. We used xanthine/xanthine oxidase (X/XO), a generator of superoxide anion (O2∙–), to induce a pathological pain condition. X/XO treatment induced an inward current and membrane depolarization. The inward current was significantly inhibited by minocycline, a microglial inhibitor, and fluorocitrate, an astrocyte inhibitor. To examine whether toll-like receptor 4 (TLR4) in microglia was involved in the inward current, we used lipopolysaccharide (LPS), a highly specific TLR4 agonist. The LPS induced inward current, which was decreased by pretreatment with Tak-242, a TLR4-specific inhibitor, and phenyl N-t-butylnitrone, a reactive oxygen species scavenger. The X/XO-induced inward current was also inhibited by pretreatment with Tak-242. These results indicate that the X/XO-induced inward current of SG neurons occurs through activation of TLR4 in microglial cells, suggesting that neuroglial cells modulate the nociceptive process through central sensitization.
Cognitive impairment is considered to be key research topics in the field of neurodegenerative diseases and in understanding of learning and memory. In the present study, we investigated neuroprotective effects of Schisandra chinensis (SC) and Ribes fasciculatum (RF) extracts in hydrogen peroxide-induced neuronal cell death in vitro and scopolamine-induced cognitive impairment in Sprague Dawley® (SD) rat in vivo. Apoptotic cell death in neuroblastic PC12 cell line was induced by hydrogen peroxide for 1 hour at 100 μM. However, mixture of SC and RF treatment prevented peroxide induced PC12 cell death with no neurotoxic effects. For in vivo experiment, the effect of SC and RF extracts on scopolamine-induced cognitive impairment in SD rat was evaluated by spontaneous alternation behavior in Y-Maze test. After 30 min scopolamine injection, the scopolamine-induced rats presented significantly decreased % spontaneous alteration and acetylcholine level, compared to non-induced group. However, treatment of SC+RF extracts rescued the reduced % spontaneous alteration with acetylcholine concentration from hippocampus in scopolamineinduced rats. These results suggested that mixture of SC and RF extract may be a potential natural therapeutic agent for the prevention of cognitive impairment.
Dopaminergic neurons are one of the major neuronal components in the brain. Mesencephalon dopamine (DA) neurogenesis takes place in the ventricular zone of the floor plate, when DA progenitors divide to generate postmitotic cells. These cells migrate through the intermediate zone while they differentiate and become DA neurons on reaching the mantle zone. However, neurogenesis and neuronal migration on dopaminergic neurons remain largely unexplored in the mesencephalon development. This study presents neurogenesis and neuronal migration patterns of dopaminergic neurons during mesencephalic development of the mouse. Neurons from embryonic day (E) 10–14 were labelled by a single injection of 5-bromodeoxyuridine and immunohistochemistry was performed. The neurogenesis occurred mainly at the E10 and E11, which was uniformly distributed in the mesencephalic region, but neurons after E13 were observed only in the dorsal mesencephalon. At the postnatal day 0 (P0), E10 generated neurons were spread out uniformly in the whole mesencephalon whereas E11-originated neurons were clearly depleted in the red nucleus region. DA neurons mainly originated in the ventromedial mesencephalon at the early embryonic stage especially E10 to E11. DA neurons after E12 were only observed in the ventral mesencephalon. At E17, E10 labelled neurons were only observed in the substantia nigra (SN) region. Our study demonstrated that major neurogenesis occurred at E10 and E11. However, neuronal migration continued until neonatal period during mesencephalic development.
건조방법을 달리한 초석잠(Stachys sieboldii Miq.)을 열수 및 70% 에탄올 용매로 추출하여 제조한 후 추출물 농도에 따른 총 flavonoid 및 총 polyphenol 함량, DPPH radical 소거활성, ABTS radical 소거활성, 산화적 스트레스로부터의 신경세포 보호효과에 미치는 효과를 조사하기 위하여 실시 하였다. 초석잠 추출물들의 총 flavonoid와 총 polyphenol 함량은 동결건조 열수 추출물에서 각각 가장 높았다(p<0.05). DPPH 및 ABTS radical 소거활성은 농도의존적으로 증가하였으며, 1,000 ug/mL 농도에서는 동결건조 열수추출물에서 유의적으로 가장 높게 나타났으나, 대조군인 비타민 C에 비해 유의적으로 낮았다(p<0.05). 신경세포 보호효과는 열품 및 동결건조 열수추출물에서 농도의존적으로 높게 나타났으며, 대조군인 비타민 C에 비해 낮았다(p<0.05). 본 연구를 통하여 열풍건조에 비해 동결건조 초석잠의 열수추출물이 총 flavonoid와 총 polyphenol 함량이 더 높게 함유되어 있어 항산화 활성 및 산화적 스트레스로부터의 신경세포 보호효과가 우수하게 나타내는 것이 관찰되었다.
The early-onset familial Alzheimer's disease (EOFAD/ FAD), the less common type of Alzheimer's disease (AD) currently affects a vast number of individuals worldwide. This type is being inherited as an autosomal dominant fashion. Missense mutations on Amyloid precursor protein (APP) and Presenilins 1 and 2 (PSEN1 & PSEN2) are known as major genetic factors in FAD. Conversely, missense mutations on microtubule-associated protein tau (MAPT) are also thought to involve. Up to date, several triple-transgenic animal models with muted forms of the human APP, PSENs and MAPT have been reported. Compared to other animals, canines are more emotional and their disease signs can be easily diagnosed. This attempt was to develop a triple transgenic canine model for the AD. We have obtained the coding sequences of APP, PSEN1 and MAPT from Dana-Farber/Harvard Cancer Center DNA resource core at HMS and incorporated several common AD mutations. The transgenic construct is composed of hNSE (ENO2) promoter-driven three AD genes fused together with modified 2A sequences. It was transfected into the canine fetal fibroblasts which were then used to perform somatic cell nuclear transfer (SCNT). The viable transgenic embryos were obtained after in vitro culture and the GFP was detected. In this study, we have successfully produced viable triple transgenic canine cloned embryos using SCNT technique. These transgenic canine embryos will be further developed into canines with FAD. The transgenic canines will be a good candidate in the AD research field.
The honey bee soluble acetylcholinesterase 1 (AmAChE1) is overexpressed under the overwintering and brood rearing-suppressed conditions. To investigate the role of AmAChE1 in regulating acetylcholine (ACh) titer, ACh concentrations both in the head (neuronal) and abdomen (non-neuronal) were analyzed. ACh titer was significantly lower in both tissues of worker bees under the overwintering and brood rearing-suppressed conditions compared to control bees. The expression levels of another two factors that regulate ACh titer, choline acetyltransferase (AmAChT) and acetylcholinesterase 2 (AmAChE2), were not altered as judged by qPCR and native PAGE, suggesting that the lower ACh titer was mainly regulated by AmAChE1. For precise verification of AmAChE1 as an ACh titer regulator, honey bees were put under brood rearing-suppressed condition to induce AmAChE1 and injected AmAChE1 dsRNA to knock down the gene. The ACh titer of AmAChE1-knocked down honey bees was 1.9 and 2.6 folds higher than that of control bees in head and abdomen, respectively. Taken together, in spite of its extremely low catalytic activity, the overexpression of AmAChE1 is likely to be related with the low level of ACh homeostasis, perhaps via ACh sequestration, under brood rearingsuppressed condition, and likely induce metabolic changes through ACh receptors-related pathways.
Earthworms have been employed in traditional oriental medicine for the treatment of neurological disorders, as anticonvulsants, analgesics, and sedatives. In fact, earthworms are currently used as a medicinal agent in China, South Korea, Japan, Taiwan and North Korea. However, both the species and the genus of the earthworms registered in the pharmacopoeia of each country are different. Neural injury is induced by oxidative stress, inflammation, and apoptosis. The role of various synthetic chemicals of earthworms as antioxidant and anti-inflammatory agents have been studied and earthworm extract and its components have been shown to protect nerve cells and restore nerve function in various preclinical neuronal damage models. We employed earthworm extracts to provide prevention and treatment strategies for many neurodegenerative disorders including Parkinson's disease, mild cognitive impairment, cerebral infarction, and peripheral nerve damage. In this study, we investigated the effects of earthworm extracts and its components to explore their prophylactic and therapeutic effects in various neuropathic models. We used earthworm resources to provide prevention and treatment strategies for many neurodegenerative disorders including Parkinson's disease, mild cognitive impairment, cerebral infarction, and peripheral nerve damage. We summarized the protective effects of both earthworms and their extracts on neuropathies. The current study identified some earthworm components to be used in treatment and prevention strategies for nerve disorders and could be helpful for the development of new therapies for intractable diseases.
This study was carried out to identify medicinal mushrooms with protective effects against oxidative stress in PC12 neuronal cell line, followed by evaluation of their antioxidant property. Extracts of medicinal mushrooms, including Ganoderma lucidum extract (GLE), antler-shaped Ganoderma lingzhi extract (AGLE), Hericium erinaceus extract (HEE), and Sanghuangporus baumii extract (SBE), were screened for cytotoxicity using MTT assay. None of the extracts up to 10 μg/ml concentration affected cell viability. These extracts were further checked for their protective effect against oxidative stress-induced reactive oxygen species (ROS) production. Exposure to 50 μM H₂O₂ induced ROS generation in PC12 cells, which was inhibited only by treatment with AGLE. In addition, inhibition of H₂O₂-induced ROS generation by AGLE was found to be in a dose-dependent manner (2.5, 5, and 10 μg/ml). Microscopic examination of DCF fluorescence for detection of ROS showed a similar pattern. Further, antioxidant activity of AGLE was determined by ABTS radical cation assay, and its IC50 was found to be 46.90±0.31 μg/ml. Taken together, these results suggest that AGLE may help to alleviate oxidative stress in PC12 neuronal cells.
Actinidia arguta (Actinidiaceae), which is commonly referred to as hardy kiwifruit, has been reported to possess anti-inflammatory, anti-allergic and antioxidative properties. The protective effect of the leaves and stems of A. arguta against amyloid β protein (Aβ) (25-35)-induced cultured neuronal cell death and memory impairment was investigated in the current study. Exposure of cultured cortical neurons to 10 μM Aβ (25-35) for 24 h induced significant neuronal death as assessed by a 3-[4,5-dimethylthiazol- 2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. However, A. arguta (10 and 50 μg/ ml) prevented Aβ (25-35)-induced apoptotic neuronal death in cultured cortical neurons. A. arguta also inhibited the 100 μM H2O2-induced decrease of the MTT reduction rate in cultured neurons. Memory impairment was produced by intracerebroventricular microinjection of 15 nmol Aβ (25- 35) and examined using the passive avoidance test in ICR mice. Chronic treatments with A. arguta (50 and 100 mg/ kg, 14 days, p.o.) significantly prevented memory impairment induced by Aβ (25-35), and A. arguta inhibited the Aβ (25-35)-induced increase of cholinesterase activity in the brains of memory impaired mice. These results suggest that A. arguta might be able to inhibit Aβ (25-35)-induced neuronal death and memory impairment via antioxidative and anti-cholinesterase effects and that A. arguta could have a therapeutic role for preventing the progression of neurodegeneration in Alzheimer’s disease.
The aim of this study was to provide a basis for the molecular mechanism underlying the pharmacological action of ethanol. We studied the effects of 1-propanol on the location of n-(9-anthroyloxy)palmitic acid or stearic acid (n-AS) within the phospholipids of synaptosomal plasma membrane vesicles (SPMV). The SPMV were isolated from the bovine cerebral cortex and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL). 1-Propanol increased the rotational mobility of inner hydrocarbons, while decreasing the mobility of membrane interface, in native and model membranes. The degree of rotational mobility varied with the number of carbon atoms at positions 16, 12, 9, 6 and 2 in the aliphatic chain of phospholipids in the neuronal and model membranes. The sensitivity of increasing or decreasing rotational mobility of hydrocarbon interior or surface by 1-propanol varied with the neuronal and model membranes in the following order: SPMV, SPMVPL and SPMVTL.
This study examined the antioxidant and neuronal cell protective effects of the water and methanol extracts of Eugenia caryophyllata Thunb. The total polyphenol content was significantly higher in the methanol extract than in the water extract. The DPPH radical scavenging activity in the water extract was similar to Vit. C at a concentration of 100~200 μg/mL. The ABTS radical scavenging activity in the water and methanol extract was similar to Vit. C at a concentration of 800~1,000 μg/mL. The superoxide dismutase (SOD)-like activity in the methanol extract was similar to Vit. C at a concentration of 800~1,000 μg/mL. The DPPH, ABTS radical scavenging and (SOD)-like activity increased with increasing extract concentration. In a cell viability using MTT, the water extract (50 and 100 ppm) and methanol extract (100 ppm) had a protective effect against H2O2-induced neurotoxicity.The result ssuggest that the extract of E. caryophyllata Thunb. has antioxidant activities and may be useful for treating neurodegenerative disorders.
Recent studies indicate that mitochondria are an important source of reactive oxygen species (ROS) in the spinal dorsal horn. In our previous study, application of malate, a mitochondrial electron transport complex I substrate, induced a membrane depolarization, which was inhibited by pretreatment with ROS scavengers. In the present study, we used patch clamp recording in the substantia geletinosa (SG) neurons of spinal slices, to investigate the cellular mechanism of mitochondrial ROS on neuronal excitability. DNQX (an AMPA receptor antagonist) and AP5 (an NMDA receptor antagonist) decreased the malate-induced depolarization. In an external calcium free solution and addition of tetrodotoxin (TTX) for blockade of synaptic transmission, the malateinduced depolarization remained unchanged. In the presence of DNQX, AP5 and AP3 (a groupⅠ metabotropic glutamate receptor (mGluR) antagonist), glutamate depolarized the membrane potential, which was suppressed by PBN. However, oligomycin (a mitochondrial ATP synthase inhibitor) or PPADS (a P2 receptor inhibitor) did not affect the substrates-induced depolarization. These results suggest that mitochondrial substrate-induced ROS in SG neuron directly acts on the postsynaptic neuron, therefore increasing the ion influx via glutamate receptors.
Alzheimer’s disease (AD), a progressive neurodegenerative disorder that deprives the patient of memory, is associated mainly with extracellular senile plaque induced by the accumulation of amyloid β protein (Aβ). Silybum marianum (Asteraceae; SM) is a medicinal plant that has long been used in traditional medicine as a hepatoprotective remedy owing to its antioxidant and anti-inflammatory activities. The present study examined the methanol extract of the aerial parts of SM for neuroprotection against Aβ (25-35)-induced neuronal death in cultured rat cortical neurons to investigate a possible therapeutic role of SM in AD. The primary cortical neuron cultures were prepared using embryonic day 15 to 16 SD rat fetuses. Cultured cortical neurons exposed to 10 μM Aβ (25-35) for 36 h underwent neuronal cell death. At 10 and 50 μg/mL, SM prevented Aβ (25-35)-induced neuronal cell death and apoptosis in cultured cortical neurons. Furthermore, SM inhibited the Aβ (25-35)-induced decrease in anti-apoptotic protein, Bcl-2, and the increase in the proapoptotic proteins, Bax and active caspase-3. Cultured cortical neurons exposed to 1 mM N-methyl-D-aspartate (NMDA) for 14 h induced neuronal cell death. SM (10 and 50 μg/mL) prevented NMDA-induced neuronal cell death. These results suggest that SM inhibited Aβ (25-35)-induced neuronal apoptotic death via inhibition of NMDA receptor activation and that SM has a possible therapeutic role in preventing the progression of neurodegeneration in AD.
The structural diversity and localization of cell surface glycosphingolipids (GSLs), including gangliosides, in glycolipid-enriched microdomains (GEMs) render them ideally suited to play important roles in mediating cell recognition, adhesion, interactions, receptor function, and signaling. Gangliosides, sialic acid-containing GSLs, are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and these changes are mainly regulated through stage-specific expression of glycosyltransferase genes. However, roles of gangliosides in neuronal differentiation of mesenchymal stem cells (MSCs) is unclear. We previously demonstrated for the first time that the glycosyltransferase genes during mouse embryogenesis. So, we investigated the effects of ganglioside gene in differentiation of adipose-derived MSCs (AD-MSCs). GM2 and GD3 ganglioside synthease were increased during neuronal differentiation of AD-MSCs. This study showed that the differentiation of neuronal marker was decreased on the first step of ganglioside synthase UDP-glucose ceramide glucosyltransferase(UGCG) and knock downed GM2 sythase (B4GALNT1). The result of suggested that GM2 and GD3 might be important roles in the neural differentiation of mini-pig AD-MSCs. This work was carried out with the funding of the cooperative research Program for Agriculture Science & Technology Development[Project No. PJ00999901], the Rural Development Adiministration, the KRIBB Research Initiative Program[KGM4251622].