검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.
        4,000원
        2.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrochemical reduction of carbon dioxide to valuable chemicals is a promising way of storing renewable energy through electric-to-chemical energy conversion, while its large-scale application is in urgent need of cheap and high-performance catalysts. Herein, we invent a convenient method to synthesize N-doped porous carbon by ammonia etching the pyrolysis carbon of petroleum pitch. We found the ammonia etching treatment not only increase the pyridinic-N content, but also enlarge the specific surface area of the petroleum pitch-based porous carbon. As a cheap and easily available catalyst for carbon dioxide electroreduction, up to 82% of Faradaic efficiency towards carbon monoxide was obtained at − 0.9 V vs the reversible hydrogen electrode in 0.1 M KHCO3. After a long time electrocatalysis of more than 20 h, the Faradaic efficiency of carbon monoxide remains 80%, indicating the porous carbon as made have an ultra-high stability as catalyst for carbon dioxide reduction. Our work provides a new technology to economically prepare efficient electrocatalysts for carbon dioxide reduction.
        4,000원
        3.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pyrolysis fuel oil (PFO) is used for the manufacturing of high-purity pitch for carbon precursor due to its high carbon content, high aromaticity, and low heterogeneous element and impurity content. Pitch is commonly classified with its softening point, which is most considerable physical property affecting to various characteristics of the carbon materials based on pitch, such as electrical and thermal conductivity, mechanical strength, and pore property. Hence, the softening point should be controlled to apply pitch to produce various carbon materials for different applications. Previous studies introduce reforming process under high pressure and two step heat treatment for the synthesis of pitch with high softening point from PFO. These methods lead to a high process cost; therefore, it is necessary to develop a process to synthesize the pitch with high softening point by using energy effective process at a low temperature. In this study, waste polyethylene terephthalate (PET) was added to control the softening point of PFO-based pitch. The pitch synthesized by the heat treatment with the addition of PET showed the softening point higher than that of the pitch synthesized with only PFO. The softening point of PFObased pitch synthesized at 420 °C was 138.3 °C, while that of the pitch synthesized by adding PET under the same process conditions was 342.8 °C. It is proposed that the effect of the PET addition on the increase in the softening point was due to the radicals generated from thermal degradation of PET. The radicals from PET react with the PFO molecules to promote the polymerization and finally increase the molecular weight and softening point of the pitch. In addition, activated carbon was prepared by using the pitch synthesized by adding PET, and the results showed that the specific surface area of the activated carbon increased by the addition of PET. It is expected that the pitch synthesis method with PET addition significantly contributes to the manufacture of pitch and activated carbon.
        4,000원
        4.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, carbon molded bodies were prepared by using graphite/coke fillers and petroleum-based binder pitch with various softening points, and the thermal properties of the prepared carbon molded bodies were investigated. The ratio of a binder affects the molded body preparation: no molded body was prepared at a low binder pitch content, and swelling occurred during the thermal treatment at a high binder pitch content. The binder pitch thermal treatment yield was the highest at 41 wt% at the softening point of 150 °C and the lowest at 23 wt% at the softening point of 78 °C. A significant mass reduction was found in the range of 150 to 300 °C in the petroleum-based binder pitch, and in the range of 300 to 475 °C in the coal-based binder pitch. The molecular weight of the binder pitch was analyzed through the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) method. The molecular weight ratio within the interval showing the highest binder pitch molecular weight (178 to 712 m/z) was the highest at 66.4% in the coal-based binder pitch (softening point 115 °C) and the lowest at 46.0% in the petroleum-based binder pitch (softening point 116 °C). When the petroleumbased binder pitch was applied, as the softening point was increased, the voids decreased and thus the thermal conductivity increased. The highest thermal conductivity was 99.5 W/mK for the carbon molded bodies prepared using the coal-based binder pitch and 102.8 W/mK for those prepared by using the petroleum-based binder pitch. The results showed that the thermal properties were similar between the coal-based binder pitch (softening point 115 °C) and the petroleum-based binder pitch (softening point 150 °C).
        4,000원
        5.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spinnable mesophase pitch precursor containing more than 98% mesophase content was successfully prepared from FCC-DO (fluid catalytic cracking-decant oil) without hydrogenation or catalytic reaction. The preparation method involved thermal condensation, vacuum treatment, and annealing treatment. Petroleum mesophase pitch-based carbon fibers are produced by melt spinning of pitch precursors, followed by stabilization and carbonization. The resulting carbon fiber exhibited good mechanical performances up to tensile strength of 2.1 GPa and tensile modulus of 212 GPa, with strain-to-failure higher than 1.0%. These properties ensuring that the automotive grade carbon fibers can be successfully prepared from FCC-DO derived petroleum mesophase pitches through the cost-competitive processes.
        4,000원
        6.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, pitch crosslinked by oxygen function groups was made into activated carbon (AC) and pore structure was observed. The oxygen functional groups were introduced by the addition of waste PET for pitch synthesis. Activation agent ratios used to obtain the AC during the activation process were 1:1, 1:2 and 1:4 (pitch:KOH, w/w). The oxygen content in the prepared pitch was characterized by elemental analysis. Also, the molecular weight of pitch was investigated by MALDITOF. Specific surface area and micropore volume of the prepared AC were determined by the argon adsorption–desorption analysis and calculated using the Brunauer–Emmett–Teller and Horvath–Kawazoe equations, respectively. Micropore fraction of PET-free AC was smaller than that of PET-added AC. At high activation agent ratio, mesopores were created when the micropore structure collapsed. However, in the PET-added AC, due to the oxygen crosslinking effect, the micropore structure and micropore size were maintained even at a high activation agent ratio. Therefore, PET AC was found to have a higher micropore fraction than that of PET-free AC.
        4,000원
        7.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We examined the pressure effects on petroleum pitch synthesis by using open and closed reaction systems. The pressure effects that occur during the pitch synthesis were investigated in three pressure systems: a closed system of high pressure and two open systems under either an atmosphere or vacuum. A thermal reaction in the closed system led to the high product yield of a pitch by suppressing the release of light components in pyrolysis fuel oil. Atmospheric treatment mainly enhanced the polymerization degree of the pitch via condensation and a polymerization reaction. Vacuum treatment results in a softening point increase due to the removal of components with low molecular weights. To utilize such characteristic effects of system pressure during pitch preparations, we proposed a method for synthesizing cost-competitive pitch precursors for carbon materials. The first step is to increase product yield by using a closed system; the second step is to increase the degree of polymerization toward the desired molecular distribution, followed by the use of vacuum treatment to adjust softening points. Thus, we obtained an experimental quinoline insolubles-free pitch of product yield over 45% with softening points of approximately 130°C. The proposed method shows the possibility to prepare cost-competitive pitch precursors for carbon materials by enhancing product yield and other properties.
        4,000원
        8.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We demonstrated an effective way of preparing melt spinnable mesophase pitches via catalytic hydrogenation of petroleum residue (fluidized catalytic cracking-decant oil) and their subsequent thermal soaking. The mesophase pitches thus obtained were analyzed in terms of their viscosity, elemental composition, solubility, molecular weight, softening point and optical texture. We found that zeolite-induced catalytic hydrogenation under high hydrogen pressure contributed to a large variation in the properties of the pitches. As the hydrogen pressure increased, the C/H ratio decreased, and the solubility in n-hexane increased. The mesophase pitch with entirely anisotropic domains of flow texture exhibited good meltspinnability. The mesophase carbon fibers obtained from the catalytically hydrogenated petroleum residue showed moderate mechanical properties.
        4,000원
        9.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbons (ACs) have been used as electrode materials of electric double-layer capacitors (EDLC) due to their high specific surface areas (SSA), stability, and ecological advantages. In order to make high-energy-density ACs for EDLC, petroleum pitch (PP) precarbonized at 500–1000°C in N2 gas for 1 h was used as the electrode material of the EDLC after KOH activation. As the pre-carbonization temperature increased, the SSA, pore volume and gravimetric capacitance tended to decrease, but the crystallinity and electrode density tended to increase, showing a maximum volumetric capacitance at a medium carbonization temperature. Therefore, it was possible to control the crystalline structure, SSA, and pore structure of AC by changing the pre-carbonization temperature. Because the electrode density increased with increasing of the pre-carbonization temperature, the highest volumetric capacitance of 28.4 F/cc was obtained from the PP pre-carbonized at 700°C, exhibiting a value over 150% of that of a commercial AC (MSP-20) for EDLC. Electrochemical activation was observed from the electrodes of PP as they were pre-carbonized at high temperatures above 700°C and then activated by KOH. This process was found to have a significant effect on the specific capacitance and it was demonstrated that the higher charging voltage of EDLC was, the greater the electrochemical activation effect was.
        4,200원
        10.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spinnable pitches and carbon fibers were successfully prepared from petroleum or coal pyrolysis residues. After pyrolysis fuel oil (PFO), slurry oil, and coal tar were simply filtered to eliminate the solid impurities, the characteristics of the raw materials were evaluated by elemental analysis, 13C nuclear magnetic resonance spectrometer, matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS), and so on. Spinnable pitches were prepared for melt-spinning carbon fiber through a simple distillation under strong nitrogen flow, and further vacuum distillation to obtain a high softening point. Carbon fibers were produced from the above pitches by single-hole melt spinning and additional heat treatment, for oxidization and carbonization. Even though spinnable pitches and carbon fibers were processed under the same conditions, the melt-spinning and properties of the carbon fiber were different depending on the raw materials. A fine carbon fiber could not be prepared from slurry oil, and the different diameter carbon fibers were produced from the PFO and coal tar pitch. These results seem to be closely correlated with the initial characteristics of the raw materials, under this simple processing condition.
        4,000원
        11.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbons (ACs) were prepared by activation of coal tar pitch (CTP) in the range of 700°C-1000°C for 1-4 h using potassium hydroxide (KOH) powder as the activation agent. The optimal activation conditions were determined to be a CTP/KOH ratio of 1:4, activation temperature of 900°C, and activation time of 3 h. The obtained ACs showed increased pore size distribution in the range of 1 to 2 nm and the highest specific capacitance of 122 F/g in a two-electrode system with an organic electrolyte, as measured by a charge-discharge method in the voltage range of 0-2.7 V. In order to improve the performance of the electric double-layer capacitor electrode, various mixtures of CTP and petroleum pitch (PP) were activated at the optimal activation conditions previously determined for CTP. Although the specific capacitance of AC electrodes prepared from CTP only and the mixtures of CTP and PP was not significantly different at a current density of 1 A/g, the AC electrodes from CTP and PP mixtures showed outstanding specific capacitance at higher current rates. In particular, CTP-PP61 (6:1 mixture) had the highest specific capacitance of 132 F/g, and the specific capacitance remained above 90% at a high current density of 3 A/g. It was found that the high specific capacitance could be attributed to the increased micro-pore volume of ACs with pore sizes from 1 to 2 nm, and the high power density could be attributed to the increased meso-pore volume.
        4,000원
        12.
        2002.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon fibers were prepared from the petroleum isotropic pitch and organometallic compounds. The metals were dispersed uniformly in the ACFs. The specific surface area and pore size distributions of metal containing ACFs were measured. The mesopores of ACFs were developed by Co, Ni, and Mn metals addition, and the catalytic reactivity of ACFs' SOx removal was increased by adding Ni and Pd metals. It was found that the mesopores did not work forthe improvement of catalytic reactivity of ACFs' SOx removal with the blank experiment using the metal removed ACFs.
        4,000원
        13.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Short pitch fibers were prepared from petroleum based isotropic precursor pitch by melt-blown technology. The pitch fibers were stabilized in oxidizing condition, followed by steam activations at various conditions. The fiber surface and pore structures of the activated carbon fibers (ACFs) were respectively characterized by using SEM and applying BET theory from nitrogen adsorption at 77 K. The weight loss of the oxidized fiber was proportional to activation temperature and activation time, independently. The adsorption isotherms of the nitrogen on the ACFs were constructed and analyzed to be as Type I consisting of micropores mainly. The specific surface area of the ACFs proportionally increased with the weight loss at a given activation temperature. The specific surface area was ranged 850~1900 m2/g with pores of narrow distribution in sizes. The average pore size was ranged 5.8~14.1 a with the larger value from the more severe activation condition.
        4,000원
        14.
        2002.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Petroleum based isotropic pitch was spun into short fiber by melt-blown spinning technology. The processing parameters chosen were air velocity, die temperature, and throughput rate of the pitch within the ranges of experimental tolerances. The fiber diameter was reduced to 6μm by increases of hot air velocity, and spin die temperature. Also, the fiber diameter was strongly dependent on the throughput rate of the pitch and jet speed of hot air through the spinnerets. Even fibers with 10μm diameter were produced at throughput rate of 0.17g/min·hole and at die temperature of 290℃.
        4,000원
        15.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A petroleum-based isotropic pitch fiber spun by melt-blown method was oxidized in air flow at various conditions. The oxidized pitch fiber obtained was tested for its infusibility and its elemental composition during the process of stabilization. The structural changes were traced by using solvent solubility, FT-IR spectroscopy, and elemental analysis. The samples showed a gradual increase in weight with increasing the oxidization temperature. The weight gain of sample oxidized at 320℃ for 10 min was about 4.5%. The concentration of the pyridine and toluene soluble fraction decreased with an increase in stabilization temperatures. The oxygen uptaken in the stabilization process converted aliphatic side chains into the carbonyl groups. As stabilization proceeded, the more ether and carboxylic acid groups were formed through the oxidations of aldehyde and primary alcohol, and then the carboxylic acid was dehydrated to be aromatic anhydride.
        4,000원
        16.
        1996.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        탄소재료 결합모재의 전구체로 핏치류가 많이 이용된다. 본 연구에서는 탄화거동에서 차이를 보이고 있은 석유계와 석탄계 핏치의 첨가량을 10-70wt%까지 배합하여 400-500˚C 온도범위에서 열처리하는 동안에 나타나는 흐름거동, 용해도 정도 등을 관찰함으로서 모재로서의 가능성을 평가하였다. 질소분위기에서 열처리속도 2.5˚C/min로 430˚C까지 승온하여 30분 동안 처리한 결과 석유계 핏치의 첨가량이 50%가 될 때 까지는 핏치의 유동성과 점결력을 좌우하는 것으로 알려질 β-resin의 양이 45wt%이상으로 나타났으며, 이렇게 혼합된 핏치는 탄화수율도 같은 조건으로 처리된 원료 핏치에 비해 73-100%까지 높은 값을 보임으로서 모재로서의 가능성이 있음을 보였다.
        4,000원