검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 321

        81.
        2017.05 구독 인증기관·개인회원 무료
        The successful establishment and maintenance of pregnancy is achieved by well-coordinated interactions between the maternal uterus and the implanting conceptus. In pigs, the conceptus undergoes dramatic morphological and functional changes, and secretes various biological products such as estrogens and cytokines, interleukin-1beta (IL1B), interferon-gamma (IFNG), and IFN-delta (IFND) during the implantation period. The uterine endometrium in response to the conceptus-derived molecules and ovarian progesterone becomes receptive to the conceptus by changing cell adhesion molecule expression, epithelial cell depolarization and secretory activity. Conceptus-derived estrogen acts as the maternal pregnancy recognition signal which changes the direction of endometrial prostaglandin (PG) F2 secretion from the uterine vasculature into the uterine lumen. Estrogen also induces the expression of a variety of endometrial genes, including AKR1B1, FGF7, LPAR3, and SPP1. The function of cytokines, IL1B, IFNG, and IFND, in the endometrium is not fully understood, but some recent work shows that IL1B is involved in the synthesis and transport of endometrial PGs by regulating endometrial expression of PG-synthetic enzymes, PTGS1, PTGS2, and AKR1B1, and PG transporters, ABCC4 and SLCO2A1. Estrogen and IL1B also stimulate endometrial expression of IFN signaling molecules, suggesting that estrogen and IL1B act cooperatively on priming the endometrial function of conceptus IFNG and IFND. In turn, IFNG derived from the elongating conceptuses, induces many endometrial genes, including CXCL9, CXCL10, CXCL12, and SLA-DQ. The role of IFND at the maternal-conceptus interface is not well understood yet. Further analysis of the molecules derived from the endometrium and conceptus will provide insights into the cellular and molecular basis of maternal-conceptus interactions for the establishment of successful pregnancy in pigs.
        82.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the swine industry, growth related traits are important economic traits directly linked to profitability. Representative growth traits include daily gain, back fat thickness, and carcass weight. This study was conducted to search for positional candidate genes associated with the carcass weight through a genome-wide association study(GWAS) using suggestive levels of statistical thresholds in pigs. As a result of the genome-wide analysis of the associations with carcass weight, the single nucleotide polymorphism(SNP) markers with suggestive significance were identified in 1 SNP marker on chromosome 2(ALGA0015365) and 1 SNP marker on chromosome 4(ALGA0023678). We could select positional 2 candidate genes, located close to the SNP markers with suggestive significance levels. The SNP markers in adjacent to the 2 genes(LOC100519538, LOC100737583) may provide basic data regarding the marker-assisted selection for the carcass weight trait in pigs.
        4,000원
        83.
        2017.03 구독 인증기관 무료, 개인회원 유료
        The oocyte undergoes various events during In vitro maturation (IVM) and subsequence development. One of the events is production of reactive oxygen species (ROS) that is a normal process of cell metabolism. But imbalances between ROS production and antioxidant systems induce oxidative stress that negatively affect to mammalian reproductive process. In vitro environments, In vitro matured oocytes have many problems, such as excessive production of ROS and imperfect cytoplasmic maturation. Therefore, In vitro matured oocytes still have lower maturation rates and developmental competence than in vivo matured oocytes. In order to improve the IVM and In vitro culture (IVC) system, antioxidants, vitamins were added to the IVM, IVC medium. Antioxidant supplementation was effective in controlling the production of ROS and it continues to be explored as a potential strategy to overcome mammalian reproductive disorders. Based on these studies, we expect that the use of antioxidants in porcine oocytes could improved maturation and development rates.
        4,000원
        84.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 RPS3 유전자의 SNP를 탐색하고 버크셔 돼지 433두에서 RPS3 유전자 SNP와 육질형질과 의 연관성을 규명하였다. SNP 탐색을 위해 버크셔 돼지의 간 조직을 사용하여 RNA-Seq을 수행한 결 과, RPS3의 염색체 451번째 G 서열이 C로 변환되어 arginine에서 serine으로 아미노산이 치환되는 non-synonymous SNP를 확인하였다. 동일한 조건에서 사육된 버크셔 돼지 433두에서 RPS3 SNP의 유전자형을 분석한 결과 major allele은 G이며 minor allele은 C로 확인되었다. RPS3의 유전자형과 육 질형질과의 연관성 분석 결과 공우성 모델에서 등지방두께(Backfat thickness), 가열감량(Cooking loss), 적색도(CIE a), 사후 45분 후 삼겹살과 등심 pH(pH45minB and pH45minL), 지방(Fat)과 단백질 (Protein) 함량 형질에서 유의성을 가졌다. 성별에 따른 RPS3 SNP 유전자형의 육질분석 결과 거세돈 은 단백질 함량에서만 유일하게 유의성이 나타난 반면 암퇘지는 등지방두께를 포함한 7가지의 육질 형 질에서 유의성을 나타나 거세돈 보다 육질 형질과의 연관성이 높은 것으로 확인되었다. 육질형질과 RPS3 SNP를 비교하였을 때, G allele을 가진 유전자형이 C allele에 비해 사후 pH45minB, 사후 pH45minL, 단백질 함량을 증가시키고, 등지방두께, 가열감량, 지방 함량을 감소시키는 것으로 확인하였 다. 따라서 G allele을 가진 돼지가 육질이 더 좋은 것으로 판단된다. 본 연구의 결과를 통해 RPS3의 SNP를 육질이 우수한 돼지고기를 생산하기 위한 분자유전 육종에서 육질 연관 biomaker로 응용 할 수 있을 것으로 사료된다.
        4,200원
        85.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pro-inflammatory cytokines, interleukin-1β (IL1B), IL6, and tumor necrosis factor-alpha (TNF), are known to play important roles in regulating the endometrial function in the uterus during the estrous cycle and pregnancy in several species. However, the expression and function of these cytokines and their receptors in the uterine endometrium during the estrous cycle have not been studied in pigs. Thus, this study determined the expression and regulation of IL1B, IL6, TNF and their respective receptors, IL1R1, IL1RAP, IL6R, GP130, TNFRSF1A, and TNFRSF1B during the estrous cycle in pigs. To analyze levels of each gene expression in the uterine endometrium we obtained from endometrial tissues on Days 0, 3, 6, 9, 12, 15, and 18 of the estrous cycle. Real-time RT-PCR analysis showed that levels of IL1B, IL1RAP, IL6R, GP130, TNF, TNFRSF1A, and TNFRSF1B mRNAs were highest on Day 15 or 18 of the estrous cycle, which corresponds to the proestrus period. Levels of IL1R1 were highest on Day 0, while levels of IL6 were biphasic with high levels on Day 6 and Day 15. The abundance of IL1B, IL6, IL6R, and TNF mRNAs was decreased by progesterone, while levels of GP130 were increased by progesterone in endometrial tissue explants. These results showed that expression of pro-inflammatory cytokines and their receptors changed stage-specifically during the estrous cycle and regulated by progesterone in the uterine endometrium in pigs, suggesting that these pro-inflammatory cytokines may be involved in the regulation endometrial function during the estrous cycle in pigs.
        4,200원
        86.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study was to identify quantitative trait loci (QTLs) influencing teat number traits in an F2 intercross between Landrace and Korean native pigs (KNP). Three teat number traits (left, right, and total) were measured in 1105 F2 progeny. All experimental animals were genotyped with 173 informative microsatellite markers located throughout the pig genome. We detect that seven chromosomes harbored QTLs for teat number traits: genome regions on SSC1, 3, 7, 8, 10, 11, and 13. Six of fourteen identified QTL reached genome-wide significance. In SSC7, we identified a major QTL affecting total teat number that accounted for 5.6% of the phenotypic variance, which was the highest test statistic (F-ratio = 61.1 under the additive model, nominal P = 1.3×10-14) observed in this study. In this region, QTL for left and right teat number were also detected with genome-wide significance. With exception of the QTL in SSC10, the allele from KNP in all 6 identified QTLs was associated with decreased phenotypic values. In conclusion, our study identified both previously reported and novel QTL affecting teat number traits. These results can play an important role in determining the genetic structure underlying the variation of teat number in pigs.
        4,000원
        87.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the changes in appetite and behavior of cattle and pigs after foot-and-mouth disease (FMD) vaccination. This study involved ten calves and ten pigs, each divided into two groups of five animals. One group of each animal was vaccinated with an FMD vaccine (FMD-V), and the other group was used as a non-treated control (CON). Each animal’s appetite and behavior were observed before vaccination and for seven days post-vaccination. In the FMD-V groups, appetite and behavior scores during the seven days post-vaccination were significantly decreased compared to those in the CON groups. The only exception was the seventh day post-vaccination in the swine behavior scores.
        3,000원
        88.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 이유 후 돈군이동지연이 자돈의 성장, 혈액성상에 미치는 영향을 규명하기 위해 수행되었다. 평균 체중 6.77 ± 1.395kg의 3원 교잡종([Yorkshire × Landrace]) × Duroc) 180두를 공시하였으며, 3처리 6반복 펜 당 10마리씩 성별과 체중에 따라 난괴법으로 배치하였다. 처리구는 1) D0: 이유 직후 분만사에서 자돈사로 이동한 처리구, 2) D3: 이유 후 분만사에서 3일 대기한 후 자돈사로 이동한 처리구 3) D5: 이유 후 분만사에서 5일 대기한 후 자돈사로 이동한 처리구이다. 실험결과 성장성적과 설사지수에서 처리구간 유의적인 차이를 발견하지 못하였다. 혈액성상에서는 이유 직전의 BUN (blood urea nitrogen) 수치가 분만틀에서 대기하는 기간이 늘어남에 따라 감소하였으며, 이유 후 cortisol 농도에서는 대기하는 기간이 늘어남에 따라 증가하였다. 하지만 면역성상에서는 IgG와 IgA 모두 다 유의적인 차이를 보이지 않았다. 따라서 이유직후에 돈군이동(D0)을 하는 것이 분만틀에서 대기 하는 것보다 자돈의 체내 질소의 이용률이나 이유 후의 동물들의 복지 측면에서 농가에게 더 효율적인 사양시스템인 것으로 사료된다.
        4,000원
        89.
        2016.12 구독 인증기관 무료, 개인회원 유료
        Demand for the development of non-antibiotic growth promoters (AGP) in animal production surged in recent years. However, elucidating the specific mechanisms and action of prebiotics, probiotics, and synbiotics as non-AGP in animals is still in progress. This work investigated and compared faecal microbiotas of weaned piglets under the administration of a basal diet (CON) and with prebiotic lactulose (LAC), probiotic Enterococcus faecium NCIMB 11181 (PRO), or their synbiotic combination (SYN). Although prebiotics and/or probiotics in the diet significantly increased alpha-diversity compared with CON values, no differences were detected in richness and diversity values among the treatment groups (LAC, PRO, and SYN). At phylum level, the Firmicutes to Bacteroidetes ratio increased in the treatment groups in comparison to the CON group, and the lowest abundance of Proteobacteria was found in LAC group. At family level, Enterobacteriaceae decreased in all treatments, especially more than 10-fold reduction in LAC group compared with CON group. At genus level, the highest abundance of Oscillibacter was detected in PRO group, the highest Clostridium in LAC group, and the highest Lactobacillus in SYN group; the abundance of Escherichia was lowest in LAC group. Clustering in the DAPC plots illustrated distinct separation of the feeding groups (CON, LAC, PRO, and SYN) from one another, showing that microbial communities had different compositions according to different feed additives. Effects of LAC and PRO treatments on the faecal microbiota suggest independent mechanisms; nonetheless, the impact of SYN might also be distinct from that when each are administered singly as LAC or PRO.
        4,000원
        90.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effect of dietary lysine and gamma-linolenic acid(GLA) levels on growth performance, carcass traits, and meat quality in finishing pigs. Pigs were provided with feed containing two different levels of lysine(0.45% and 0.75%) with three different levels of gamma-linolenic acid(0.0, 0.3, and 0.6%). Average daily gain(ADG) was significantly lower (p<0.01) in pigs provided with the lower level of lysine. In contrast, feed/gain(p<0.01), diet cost/gain(p<0.05), and intramuscular fat(p<0.01) were all significantly higher in pigs fed the lower level of lysine. Similarly, meat color scores(CIE L*, a*, and b*) and cooking loss were significantly higher(p<0.01) in pigs fed the lower level of lysine, whereas shear force(kg/2.5 inch2)was not affected by dietary lysine. The addition of GLA had no significant effect on any of the parameters measured. The results indicate that providing pigs with 0.45% lysine in their diet may help to increase intramuscular fat content, allowing the industry to produce pork products that meet consumer needs in Korea.
        4,000원
        91.
        2016.10 구독 인증기관·개인회원 무료
        Using a partial D-loop sequence of mtDNA, a comprehensive molecular evolutionary analysis was performed of the maternal lineages of the Jeju native pigs(JNPs) that presented in Jeju Island. A total of 100 DNA sequences from Asian domestic pigs(ADP), European domestic pigs(EDP), Asian wild boars(AWB), European wild boars(EWB), and JNPs were used for the molecular evolutionary analyses including phylogeny and network analyses. The most fitted model for the phylogenetic analysis was determined using hierarchical likelihood-ratio tests conducted by MrModeltest implemented in the PAUP package. A consensus tree was established from 5,000,000 iterations using the MR BAYS program. Three recognizable JNP groups–one(JNPE) in the European cluster and two(JNPA1 and JNPA2) in the Asian cluster–were detected in the estimated phylogenetic tree and network. The maternal lineage of JNPE was the most adjacent to that of EWB and a clear haplogroup sharing an identical haplotype(hap16) among 15 individuals of JNPE and 2 individuals of EWB was detected.
        92.
        2016.10 구독 인증기관·개인회원 무료
        The α-Gal epitope (Galα1,3Galα1,4GlcNAc-R) is responsible for hyperacute rejection (HAR) during transgenic pig-to-non-human primate xenotransplantation. There are genes related to the expression of α-Gal epitope such as α1,3Galactosyltransferase gene (GT-/-) and the isoglobotrihexosylceramide synthase (iGb3s-/-). This study was performed to investigate the expression of α-Gal epitope in the skin derived from GT-/- transgenic pig. The skin (7/1000 inches) was obtained by dermatome (Zimmer® Electric Dermatome) from one month old of wildtype (WT) and GT-/- piglets, respectively. The skins were fixed, dehydrated, cleaned, and embedded. To analyze the expression of α-Gal epitope, the paraffin section of WT and GT-/- were stained with BS-IB4 lectin and isoglobotrihexosylceramide synthase antibody. There was a strong BS-IB4 lectin signal in the skin of WT, but not detected in GT-/-. However, the iGb3s positive signals were stained in the skin of both WT and GT-/-. Taken together, it can be postulated that the knocked out of GT gene may not enough to inhibit the expression of α-Gal epitope. Further studies are needed to evaluate the functions of the double knock out of GT and iGb3s on the expression of α-Gal epitope.
        93.
        2016.10 구독 인증기관·개인회원 무료
        In mature oocytes, maturation promoting factor (MPF) activity is playing important roles in arrest at M-phase and its continuous phenomenon, oocyte aging. In most mammals, metaphase II oocytes show high MPF activity and have been used as ooplasts in somatic cell nuclear transfer (SCNT). Caffeine has been found to regulate MPF activity in mammalian oocytes. Caffeine inhibits p34cdc2 phosphorylation and increases MPF activity. The present study investigated the effects of caffeine treatment during last 4 hours of in vitro maturation (IVM) on oocyte maturation and embryonic development after parthenogenesis (PA) and SCNT. The IVM medium was medium-199, 10% (v/v) PFF, cysteine, pyruvate, epidermal growth factor, kanamycin, insulin, and hormones. Immature oocytes were matured in IVM medium without or with 2.5 mM caffeine during the last 4 hours of IVM. The in vitro culture medium for embryonic development was porcine zygote medium-3 containing 0.3% (w/v) bovine serum albumin. Nuclear maturation (83.6–87.2%) and intraoocyte glutathione contents (0.9–1.0 pixels/oocyte) of oocytes were not influenced by the caffeine treatment. The membrane fusion of cell-cytoplast couplets (75.5–76.5%) and cleavage (85.4–86.2%) were also not altered by the caffeine treatment. However, caffeine-treated oocytes showed higher (P<0.05) blastocyst formation after SCNT (47.5 vs. 34.3%) than untreated oocytes. Our results demonstrate that caffeine treatment during last 4 hour of IVM improves the developmental competence of SCNT embryos probably by influencing MPF activity.
        94.
        2016.10 구독 인증기관·개인회원 무료
        Fatty acid synthesis (FASN) is an enzyme responsible for the de novo synthesis of long-chain fatty acids. During oncogenesis, FASN plays a role in growth and survival rather than acting within the energy storage pathways. Here, the function of FASN during early embryonic development was studied using its specific inhibitor C75. We found that the presence of the inhibitor reduced blastocyst hatching. FASN inhibition decreased Cpt1 expression, leading to a reduction in mitochondrial copy numbers and ATP content. This inhibition of FASN results in the down-regulation of the AKT pathway, thereby triggering apoptosis through the activation of the p53 pathway. Activation of the apoptotic pathways also leads to increased accumulation reactive oxygen species and autophagy. In addition, the FASN inhibitor can impair cell proliferation, a parameter of blastocyst quality for outgrowth. The level of OCT4, an important factor in embryonic development, decreased after treatment with the FASN inhibitor. These results show that FASN exerts an effect on the early embryonic development by regulation of both fatty acid oxidation and the AKT pathway in pigs.
        95.
        2016.10 구독 인증기관·개인회원 무료
        Spindlin1(Spin1), a meiotic spindle-binding protein that is highly expressed in cancer cells. Spindle-binding was dependent on its phosphorylation status, which was partially regulated by Mos/MAP kinase pathway. Nevertheless, the biologic roles of Spin1 in oocytes maturation are still largely unknown. For exploring the function of Spin1 in porcine oocyte maturation, Knockdown and overexpression methods were employed to the present study. Spin1 mRNA were enriched in maternal stages, from germinal vesicle - to 2 cell - stage, but sharply decreased after 4 cell stage, zygotic genome activation. Protein of SPIN1 was localized in spindle-chromatin complex during the metaphase I and metaphase II stages. Knockdown of Spin1 did not affect the first polar body extrusion, however, Spin1 depletion caused mitotic spindle defects, chromosome instability and pronuclear formation in metaphase II stage. Percentage of 2cell, 4cell embryos and blastocyst formation were significantly reduced in knockdown group compared with control, but cell numbers in blastocyst were no difference between control and knockdown groups. Another hand, Oocyte failed to maturation and induced metaphase I arrest following Spin1 over-expression. In conclusion, Spin1 is involved in the spindle formation and maintenance during oocytes meiotic maturation in pigs.
        96.
        2016.10 구독 인증기관·개인회원 무료
        The migration, adhesion, and proliferation of conceptuses during pregnancy are tightly controlled processes that are mediated by various factors including cytokines, growth factors, and hormones. Among many factors, chemokines play key roles in lymphocyte trafficking, cellular proliferation, vascularization, and embryogenesis in many mammalian species. Especially, it has been shown that C-X-C chemokine ligand 12 (CXCL12) plays an important role in early pregnancy by promoting trophoblast invasion, proliferation, and differentiation through its receptor, C-X-C chemokine receptor 4 (CXCR4) in humans. However, expression and function of CXCL12 in the uterine endometrium during pregnancy have not been well studied in pigs. Thus, we determined expression of CXCL12 and its receptor, CXCR4, in the uterine endometrium during the estrous cycle and pregnancy in pigs. We obtained endometrial tissues from gilts on day (D) 12 and D15 of the estrous cycle and D12, D15, D30, D60, D90, and D114 of pregnancy, conceptus tissues from D12 and D15 of pregnancy, and chorioallantoic tissues from D30, D60, D90, and D114 of pregnancy. Real-time RT-PCR analysis showed that levels of CXCL12 and CXCR4 mRNAs changed in the uterine endometrium during pregnancy. Levels of CXCL12 and CXCR4 mRNAs on D15 of pregnancy were higher than those on D15 of the estrous cycle. After D15 of pregnancy levels of CXCL12 and CXCR4 mRNAs gradually decreased toward term of pregnancy, and CXCL12 and CXCR4 were expressed in the chorioallantoic tissues during the mid- to late pregnancy. CXCL12 and CXCR4 mRNAs were expressed in chorioallantoic tissues during mid- to late pregnancy, and RT-PCR analysis showed that CXCL12 and CXCR4 mRNAs were detectable in conceptus on D12 and D15 of pregnancy. Immunohistochemistry showed that CXCL12 proteins were localized to endometrial luminal and glandular epithelial cells during the estrous cycle and pregnancy, and to chorionic epithelial cells during mid- to late pregnancy. Abundance of CXCL12 mRNAs, but not CXCR4, in the uterine endometrium was increased by the treatment of IFNG. These results showed that CXCL12 and CXCR4 were expressed in the uterine endometrium, conceptus, and chorioallantoic tissues and IFNG increased endometrial CXCL12 expression in pigs, suggesting that CXCL12 and its receptor may play a key role in regulation of the establishment and maintenance of pregnancy by affecting the conceptus development in pigs. [supported by the Next Generation BioGreen 21 Program (#PJ01110301), Rural Development Administration]
        97.
        2016.10 구독 인증기관·개인회원 무료
        S100As are calcium-binding proteins with two EF-hand calcium-binding motifs. In several studies, S100A proteins are described to play important roles in pro-inflammatory responses including damage-associated molecular pattern (DAMP) signaling and in the establishment of pregnancy. However, the role of S100As have not been determined in the uterine endometrium during the estrous cycle in pigs. Thus, this study was performed to investigate expression and regulation of S100A8, S100A9, and S100A12 in the uterine endometrial tissues during the estrous cycle in pigs. Real-time RT-PCR analysis showed that S100A8, S100A9, and S100A12 mRNAs were expressed in the uterine endometrium during the estrous cycle with higher levels on days 15 and 18 of the estrous cycle than other days of cycle. To investigate the effects of steroid hormones, estradiol (E2) and progesterone (P4), on expression of S100A8, S100A9, and S100A12 mRNAs, endometrial tissue explants from immature pigs were treated with steroid hormones. Levels of S100A8, S100A9, and S100A12 were increased by the treatment of P4, and the increased levels of S100A8, S100A9, and S100A12 by P4 were not inhibited by the treatment of progesterone receptor antagonist, RU486. However, levels of S100A8, S100A9, and S100A12 were decreased by treatment of MEK inhibitor, U0126. These results exhibited that S100As were expressed in the uterine endometrium during the estrous cycle in a cyclic stage-specific manner, and their expression was affected by P4. These suggest that S100As may play an important role in endometrial function during the proestrous period of the estrous cycle in pigs. [Supported by the Next Generation Biogreen 21 program (#PJ01119103), Rural Development Administration, and by Korea Research Foundation (#2015R1D1A1A01058356)]
        98.
        2016.10 구독 인증기관·개인회원 무료
        For the establishment and maintenance of successful pregnancy the maternal immune system must tolerate semi-allogenic fetus during pregnancy. Several mechanisms explaining immune tolerance have been proposed. Among those, it has been suggested that the CD40/CD40L system is involved in immune tolerance in several tissues. However, expression and function of CD40/CD40L in the maternal-fetal interface during pregnancy have not been studied in pigs. Thus, this study determined expression and localization of CD40 and CD40L in the uterine endometrium during pregnancy in pigs. We obtained uterine endometrial tissue samples from day (D) 12 and D15 of the estrous cycle and from D12, D15, D30, D60, D90 and D114 of pregnancy. Quantitative real-time PCR analysis showed that levels of CD40L mRNA expression during pregnancy increased on D15 of pregnancy and decreased thereafter whereas levels of CD40 mRNA was highest on D30 of pregnancy. Localization of CD40 and CD40L proteins by immunohistochemistry showed that CD40 was localized to vascular endothelial cells with strongest signal intensity on D15 of pregnancy, and CD40L was localized to luminal epithelial cells on D15 of pregnancy and amniotic membrane during mid- to late pregnancy. To determine the effect of IFNG on CD40 and CD40L expression, we took advantage of endometrial explant culture using tissues from D12 of the estrous cycle, and found that CD40 was up-regulated by IFNG in a dose-dependent manner. These results showed that CD40 and CD40L were expressed in the uterine endometrium in a cell-type and stage-specific fashion during pregnancy, and IFNG induced CD40, indicating that the CD40/CD40L system may be important for establishment and maintenance of pregnancy in pigs. [Supported by the Next Generation BioGreen21 Program (#PJ01110301), Rural Development Administration]
        99.
        2016.10 구독 인증기관 무료, 개인회원 유료
        Adipose tissue is the largest energy storage in the body, with the endocrine, paracrine and autocrine function, and they constitute a network regulatory signal, and participate in energy balance and metabolism regulation in adipose tissue. When adipose tissue is excessively accumulated or obesity, inflammatory signaling pathway is activated as the secretion increase of a variety of inflammatory cytokines, then, the body is under the state of chronic inflammation, causing insulin resistance and many metabolic diseases, such as type 2 diabetes, atherosclerosis, cancer and other chronic metabolic disease, and bringing a serious health crisis to humans. And, excessive fat deposition reduces the feed conversion rate, leading to the increase of livestock and poultry production cost and the reduction of meat food quality. Therefore, the regulation of adipogenic differentiation has become an important field in the study of human health and animal production. 1. The source of adipose tissue The formation of adipose tissue is due to the increase of adipose cell number caused by differentiation and the increase of adipose cell volume and adipose accumulation during development. This process is that adipose mescenchymal stem cells (AMSCs) are transformed to preadipocytes in adipogenic environment, and differentiation related specific transcription factors start to express and induce the specific expression of adipose cell genes and terminal differentiation, finally, mature adipose cells are formed after adipose accumulation. Recent studies have suggested that dedifferentiated fat cells (DFATs) may be an important source of adipose tissue. Mature adipose cells can be dedifferentiated to the sub cells (DFATs) with the dividing ability in vitro culture, and DFATs are pluripotent and can be redifferentiated to adipose cells or transdifferentiated to other cell types, such as cartilage cells, bone cells, muscle cells, etc. by induction. This suggests that DFATs are progenitor cells with the stem cell properties, showing the great potential in tissue engineering and regenerative medicine. Research on the mechanism of DFATs redifferentiation and transdifferentiation has an important significance for human health and animal production. 2. Regulation of adipocyte differentiation and transcription The adipocyte differentiation lies in the transcription level regulation, involving the cascade and cooperative effects of multiple transcription factors, among which, the core transcription factor is peroxisome proliferator activated receptors-γ (PPARγ), which specifically expresses in adipose tissue, combines the promoters of downstream genes promoter and induces their expression, such as lipoprotein lipase (LPL), insulin sensitive glucose transporter 4 (GLUT4), fatty acid synthase (FAS), adipose-specific fatty acid binding protein-2 (AP2) and adiponectin, and promotes the differentiation and maturation of adipose cells. 3. Transcription regulation of PPARγ by Kruppel like factors Kruppel like factors (KLFs) are a class of transcription factors with zinc finger structure, which is involved in the regulation of cell proliferation, cell apoptosis, cell differentiation and tumor formation in a variety of animal cell types. Since KLF15 is first proved to have the transcriptional regulation capability of adipose differentiation by Gray, et al. in 2002, other KLFs are also found to be involved in the adipose differentiation regulation. According to the recent studies of KLFs regulation of adipose differentiation, Christopher, et al. in 2009 summarized KLFs transcription regulation network in the PPARγ upstream. This network includes 8 types of KLFs, namely, KLF2-7, KLF11 and KLF15, among which, KLF2, KLF3 and KLF7 are involved in the negative regulation of adipose formation, while KLF4-6, KLF11 and KLF15 positively regulates adipose formation, and they express according to a certain time sequence during adipocyte differentiation. 4. Regulation of adipose differentiation by curcumin Curcumin is a kind of polyphenols extracted from Curcuma longa L.. Curcumin can reduce the mice obesity formation, directly interfere with the preadipocytes differentiation and decrease the adipocyte number and adipose accumulation. Moreover, curcumin plays a role in the early stage of adipocyte differentiation, and inhibit the mitotic proliferation process and the expression levels of PPARγ, C/EBPα, and certain downstream transcription factors. 5. Regulation of AMSCs and DFATs adipogenic differentiation in pigs It is generally believed that pigs are the most suitable animal models for the application of human clinical medicine. Also, pigs are the largest source of human meat food, and one of animals with the most fat content. Therefore, research on the regulation of porcine adipocyte differentiation has an important significance for the establishment of human disease model and the production of low fat and lean meat pigs. This report summarizes the expression patterns of different KLFs and the effect of curcumin on the KLFs and PPARγ expression during the adipogenic differentiation of porcine AMSCs and DFATs in recent years.
        3,000원
        100.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to investigate to influence of glutathione (GSH) on development and antioxidant enzyme activity in tetraploid porcine embryos. Tetraploid embryos were produced using parthenogenetic 2-cell embryo by electrofusion method. Tetraploid embryo development was observed every 24 hours and intracellular antioxidant enzyme activity was measured at 120 hours after electrofusion. The 4-cell to 16-cell stage tetraploid embryos was increased in 100 and 500 μM GSH-treated groups compared control group at 48 hours (P < 0.05) but cleavage rates were not significantly different among the GSH treatment groups at 48, 72, 96, and 120 hours. Blastocyst formation was significantly increased by 300 and 500 μM GSH at 120 hours in tetraploid embryos (P < 0.05). But blastocyst cell number were not significantly different among the GSH treatment groups (16.4 ± 0.8, 16.8 ± 2.6, 18.5 ± 2.8 and 17.5 ± 1.8). The intracellular antioxidant enzyme level was increased in 500 μM GSH compared to 0 and 100 μM GSH (P < 0.05). We suggest that GSH may be improve development of tetraploid embryo in pigs.
        4,000원
        1 2 3 4 5