Electric-propulsion systems for ships, also known as electric propulsion devices, represent the current direction of development for maritime power. Issues concerning the environment and fuel economy have compelled the maritime transport sector to seek solutions that reduce emissions and improve fuel efficiency. In this process, power electronics technology plays a significant role in the propulsion systems of ships. Selecting an efficient battery system is of great importance for enhancing the cruising range of yachts and minimizing environmental impact. The battery model is crucial for revealing the working principles of batteries, and it is extremely critical for the application and development of battery technology. The Battery Management System (BMS) serves a crucial regulatory function, optimizing both the safety and performance of battery cells. Central to its operation is the precise estimation of the battery's State of Charge (SOC), a process dependent on an exacting battery model. This system not only enhances longevity and reliability but also ensures that energy storage solutions meet high standards of efficacy. This study focused on testing the impedance characteristics of lithium-sulfur batteries (LSB) at various SOC points and establishing first- and second-order RC equivalent circuit models. The model parameters were identified through experimental data. Subsequently, a simulation platform was constructed using MATLAB/Simulink to simulate the behavior of LSB under a constant current discharge condition. The simulation results showed that the second-order RC model had significantly lower errors than the first-order model, demonstrating higher accuracy. These achievements can provide technical support for the research of energy storage systems in the green aviation and maritime industries.
At the Bank of Korea, capital stock statistics were created by the PIM (perpetual inventory method) with fixed capital formation data. Asset classifications also included 2 categories in residential buildings, 4 non-residential buildings, 14 constructions, 9 transportation equipment, 28 machinery, and 2 intangible fixed assets. It is the Korean government accounting system which is developed much with the field of the national accounts including the valuation, but until 2008 it was consistent with single-entry bookkeeping. Many countries, including Korea, were single-entry bookkeeping, not double-entry bookkeeping which can be aggregated by government accounting standard account. There was no distinction in journaling between revenue and capital expenditure when it was consistent with single-entry bookkeeping. For example, we would like to appropriately divide the past budget accounts and the settlement accounts data that have been spent on dredging into capital expenditure and revenue expenditure. It, then, tries to add the capital expenditure calculated to FCF (fixed capital formation), because revenue expenditure is cost for maintenance etc.
This could be a new direction, especially, in the estimation of capital stock by the perpetual inventory method for infrastructure (SOC, social overhead capital). It should also be noted that there are differences not only between capital and income expenditure but also by other factors. How long will this difference be covered by the difference between the ‘new series’ and ‘old series’ methodologies? In addition, there is no large difference between two series by the major asset classification level. If this is treated as a round-off error, this is a problem.
The enterprise life cycle derived from the product life cycle consists of introduction, growth, maturity and decline. The enterprise tries to reach the growth stage early and stay at the maturity stage stably through expanding its businesses and investing for the new technology. The public enterprise is not different but its life cycle is more prone to be affected by the national development and policy. A typical example can be found in the case of the quasi market SOC public enterprise which spends massive amount of fund to provide social infrastructure. After the fulfillment of its mandated mission it is exposed to the pressure of a merger or a closure usually because large portion of the debt is directly linked to the national financial stability and credit ratings. This research is focused on the variables that influence the life cycle of the quasi market SOC public Enterprise for its future competitiveness is in connection with its normalization, advancement and rationalization. In this respect, categorical variables system centering on public characteristics and profitability drew eight categorical variables such as policy outcomes, public benefit, finance and business values etc.
최근 녹색뉴딜혁명으로 새로운 청정에너지원의 활용이 요구됨에 따라, 철로나 도로같은 생활주변의 사회기반시설에서 발생되는 열 에너지의 하베스팅 가능성을 검증하기 위해 도시 및 생활주변에서 느껴지는 뜨거운 열과 온도를 열전현상을 이용한 Bi-Te계열의 열전소자를 통해 열-전기변환 가능성을 확인하고, 도시산업 기반시설의 열원 및 주변환경변화를 고려한 실험을 통해 발생되는 전기적 특성을 확인하여, 도시에서 무의식적으로 폐기되고 있는 열에너지의 효율적인 활용방안에 대하여 모색하였다. 아스팔트 포장도로나 콘크리트 구조물등의 사회기반시설에서 발생 가능한 열원의 온도차를 열전소자 양단에 공급하고, 열전달 방법과 재료 공급시간 등을 변수로 하여 발생하는 전기적 특성을 측정한 실험결과 70℃의 온도차와 1m2의 면적에서 약 20.82W의 전력을 얻을 수 있음을 확인함으로써 열에너지 회수 가능성을 검증하였고, 산업기반시설에서 발생하는 열원의 온도변화율 및 변환면적이 열-전기변환에 있어서 가장 큰 영향을 미치고 있는 것을 확인하였다. 또한 효율적인 열전 발전을 위해서는 열전소자 자체의 변환효율성능의 향상과 더불어 열에너지원의 열손실 감소, 열보존율 향상 등의 활용방법을 통해 효율적이고 지속적인 열전 발전의 가능성이 있음을 확인하였다.
MIRIS is the main payload of the STSAT-3 (Science and Technology Satellite 3) and the first infrared space telescope for astronomical observation in Korea. MIRIS space observation camera (SOC) covers the observation wavelength from 0.9μm to 2.0μm with a wide field of view 3.67∘×3.67∘ . The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200 K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI (Multi Layer Insulation) of 30 layers, and GFRP (Glass Fiber Reinforced Plastic) pipe support in the system. Optomechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform Galactic plane survey with narrow band filters (Pa α and Pa α continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.
SOC(Social Overhead Capital) projects such as road, power plant, airport or telecommunication facility construction require a large scale of cost, a long period of time and management of a number of sub-contractors. So systematic and efficient management
SOC(Social Overhead Capital) projects such as road, power plant, airport or telecommunication facility construction require a large scale of cost, a long period of time and management of a number of sub-contractors. So systematic and efficient management tool in SOC projects is inevitable. Information system provides a valuable tool which can integrate and manage the large volume of information for SOC projects. This study investigates and analyzes the information system of nuclear power plant construction project. Based on this study, we can suggest the direction for designing information system for SOC projects.