We present optical observations of a nearby Type Ia supernova (SN Ia) 2018kp on January 24 2018, +1.4 days after the estimated first light time. Its host galaxy, NGC 3367, has been under high-cadence monitoring (≲1 day) with the purpose of providing valuable early light curves of supernovae as a primary target of the Intensive Monitoring Survey of Nearby Galaxies (IMSNG; Im et al. 2019). SN 2018kp exhibits the characteristics of a normal SN Ia, with a peak luminosity of MB = −19.0 ± 0.4 mag and Δm15(B) = 1.19 ± 0.03 mag, derived from our long-term light curve analysis. We estimate the host extinction to be high [E(B − V )host = 0.697 ± 0.028 mag], contrasting with its sibling, SN 1986A. We estimate the mass of 56Ni synthesized in the explosion to beMNi = 0.55±0.14M⊙. A single power-law model (tα) describes the rising behavior of the early light curve well, with little evidence of the shock-heated cooling emission. We place upper limits on the radii of the progenitor (Rp ≤ 1.8 R⊙) and the companion star (Rc ≤ 1.9 R⊙ at the optimal or Rc ≤ 19.2 R⊙ at the common viewing angle, respectively) ruling out a large companion such as a red giant. Based on our data, we derive a distance to the host galaxy of 41.38 ± 2.20 Mpc assuming that SN 2018kp follows the Phillips relation.
The economical manufacturing of high-quality graphene has been a significant challenge in its large-scale application. Previously, we used molten Sn and Cu as the heat-transfer agent to produce multilayer graphene on the surface of gas bubbles in a bubble column. However, element Sn and Cu have poor catalytic activity toward methane pyrolysis. To further improve the yield of graphene, we have added active Ni into Sn to construct a Sn–Ni alloy in this work. The results show that Sn–Ni alloy is much more active for methane pyrolysis, and thus more graphene is obtained. However, the graphene product is more defective and thicker because of the faster growth rate. By using 300 ml molten Sn–Ni alloy (70 mm height) and 500 sccm source gas ( CH4:Ar = 1:9), this approach produces graphene with a rate of 0.61 g/hr and a conversion rate of methane to carbon of 37.9% at 1250 ℃ and ambient pressure. The resulting graphene has an average atom layer number of 22, a crumpled structure and good electrical conductivity.
This study investigated the optimal process conditions and mechanical properties of Cu-10Sn alloys produced by the powder bed fusion (PBF) method. The optimal PBF conditions were explored by producing samples with various laser scanning speeds and laser power. It was found that under optimized conditions, samples with a density close to the theoretical density could be fabricated using PBF without any serious defects. The microstructure and mechanical properties of samples produced under optimized conditions were investigated and compared with a commercial alloy produced by the conventional method. The hardness, maximum tensile strength, and elongation of the samples were significantly higher than those of the commercially available cast alloy with the same chemical composition. Based on these results, it is expected to be possible to use the PBF technique to manufacture Cu-10Sn products with complex 3D shapes that could not be made using the conventional manufacturing method.
In this study, we report the microstructural evolution and shear strength of an Sn-Sb alloy, used for die attach process as a solder layer of backside metal (BSM). The Sb content in the binary system was less than 1 at%. A chip with the Sn-Sb BSM was attached to a Ag plated Cu lead frame. The microstructure evolution was investigated after die bonding at 330 °C, die bonding and isothermal heat treatment at 330 °C for 5 min and wire bonding at 260 °C, respectively. At the interface between the chip and lead frame, Ni3Sn4 and Ag3Sn intermetallic compounds (IMCs) layers and pure Sn regions were confirmed after die bonding. When the isothermal heat treatment is conducted, pure Sn regions disappear at the interface because the Sn is consumed to form Ni3Sn4 and Ag3Sn IMCs. After the wire bonding process, the interface is composed of Ni3Sn4, Ag3Sn and (Ag,Cu)3Sn IMCs. The Sn-Sb BSM had a high maximum shear strength of 78.2 MPa, which is higher than the required specification of 6.2 MPa. In addition, it showed good wetting flow.
This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520oC. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515oC following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.
Electroless plating is widely utilized in engineering for the metallization of insulator substrates, including polymers, glass, and ceramics, without the need for the application of external potential. Homogeneous nucleation of metals requires the presence of Sn-Pd catalysts, which significantly reduce the activation energy of deposition. Therefore, rinsing conducted during Sn sensitization and Pd activation is a key variable for the formation of a uniform seed layer without the lack or excess of catalysts. Herein, we report the optimized rinsing process for the functionalization of Sn-Pd catalysts, which enables the uniform FeCo metallization of the glass fibers. Rinsing enables good deposition of the FeCo alloy because of the removal of excess catalysts from the glass fiber. Concurrently, excessive rinsing results in a complete removal of the Sn–Pd nucleus. Collectively, the comprehensive study of the proposed nanomaterial preparation and surface science show that the metallization of insulators is a promising technology for electronics, solar cells, catalysts, and mechanical parts.
Extensive research is being carried out on Ni-rich Li(NixCoyMn1-x-y)O2 (NCM) due to the growing demand for electric vehicles and reduced cost. In particular, Ni-rich Li(NixCoyMn1-x-y-zAlz)O2 (NCMA) is attracting great attention as a promising candidate for the rapid development of Co-free but electrochemically more stable cathodes. Al, an inactive element in the structure, helps to improve structural stability and is also used as a doping element to improve cycle capability in Ni-rich NCM. In this study, NCMA was successfully synthesized with the desired composition by direct coprecipitation. Boron and tin were also used as dopants to improve the battery performance. Macro- and microstructures in the cathodes were examined by microscopy and X-ray diffraction. While Sn was not successfully doped into NCMA, boron could be doped into NCMA, leading to changes in its physicochemical properties. NCMA doped with boron revealed substantially improved electrochemical properties in terms of capacity retention and rate capability compared to the undoped NCMA.
Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.
The purpose of this study is to develop a zirconium-based alloy with low modulus and magnetic susceptibility to prevent the stress-shielding effect and the generation of artifacts. Zr-7Cu-xSn (x = 1, 5, 10, 15 mass%) alloys are prepared by an arc melting process. Microstructure characterization is performed by microscopy and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness and compression test. The magnetic susceptibility is evaluated using a SQUIDVSM. The average magnetic susceptibility value of the Zr-7Cu-xSn alloy is 1.176 × 108 cm3g1. Corrosion tests of zirconiumbased alloys are conducted through polarization test. The average Icorr value of the Zr-7Cu-xSn alloy is 0.1912 A/cm2. The elastic modulus value of 14 ~ 18 GPa of the zirconium-based alloy is very similar to the elastic modulus value of 15 ~ 30 GPa of the human bone. Consequently, the Sn added zirconium alloy, Zr-7Cu-xSn, is very interesting and attractive as a biomaterial that reduces the stress-shielding effect caused by differences of elastic modulus between human bone and metallic implants. In addition, this material has the potential to be used in metallic dental implants to effectively eliminate artifacts in MRI images due to low magnetic susceptibility.