The governing equation for a dome-type shallow spatial truss subjected to a transverse load is expressed in the form of the Duffing equation, and it can be derived by considering geometrical non-linearity. When this model under constant load exceeds the critical level, unstable behavior is appeared. This phenomenon changes sensitively as the number of free-nodes increases or depends on the imperfection of the system. When the load is a periodic function, more complex behavior and low critical levels can be expected. Thus, the dynamic unstable behavior and the change in the critical point of the 3-free-nodes space truss system were analyzed in this work. The 4-th order Runge-Kutta method was used in the system analysis, while the change in the frequency domain was analyzed through FFT. The sinusoidal wave and the beating wave were utilized as the periodic load function. This unstable situation was observed by the case when all nodes had same load vector as well as by the case that the load vector had slight difference. The results showed the critical buckling level of the periodic load was lower than that of the constant load. The value is greatly influenced by the period of the load, while a lower critical point was observed when it was closer to the natural frequency in the case of a linear system. The beating wave, which is attributed to the interference of the two frequencies, exhibits slightly more behavior than the sinusoidal wave. And the changing of critical level could be observed even with slight changes in the load vector.
In the era of the Fourth Industrial Revolution, Various attempts are being made to converge new industries with IT industry to find new growth engines in the field of IT, maximizing efficiency in terms of productivity. 3D printers are also related to this, and various studies have been conducted worldwide to utilize them in the construction industry. At present, there is an active effort to study atypical structures using 3D printers. The most widely used method is the use of glass panels, however, the additional cost of the manufacturing process and thus the overall project cost cannot be ignored. In addition, the construction of the curvature of the existing two-way curved surface in the conventional flat joint method is not suitable for implementing an amorphous shape. In this paper, we propose an optimized shape through Abaqus analysis of various shapes of Space Truss interior using 3D printing technology using polymer.
A stadium roof that uses the pin-jointed spatial truss system has to be designed by taking into account the unstable phenomenon due to the geometrical non-linearity of the long span. This phenomenon is mainly studied in the single-free-node model (SFN) or double-free-node model (DFN). Unlike the simple SFN model, the more complex DFN model has a higher order of characteristic equations, making analysis of the system’s stability complicated. However, various symmetric conditions can allow limited analysis of these problems. Thus, this research looks at the stability of the DFN model which is assumed to be symmetric in shape, and its load and equilibrium state. Its governing system is expressed by nonlinear differential equations to show the double Duffing effect. To investigate the dynamic behavior and characteristics, we normalize the system of the model in terms of space and time. The equilibrium points of the system unloaded or symmetrically loaded are calculated exactly. Furthermore, the stability of these points via the roots of the characteristic equation of a Jacobian matrix are classified.
본 연구는 공간 트러스의 전체 좌굴을 고려한 최적 구조설계에 대해 연구를 하였으며, 구조물의 최소중량을 구하는 것이 목적이다. 응력제약에 의한 부재 최적화를 위해서 수리 계획법이 사용되었으며, 뜀-좌굴을 고려하기 위해 동적 계획법을 적용하였다. 트러스 부재의 최적설계를 위한 수리 모형은 전체중량 목적함수와 인장 또는 압축 허용응력 및 세장비 제약식으로 구성하였다. 평형경로상의 임계점 즉 좌굴하중을 구하기 위해서 접선 강성행렬의 행렬식 변화를 조사하였으며, 설계하중에 대한 좌굴하중 비율이 동적계획법의 반복계산과정에서 공간 트러스의 강성을 조절하기위해 반영되었다. 제안된 최적설계 프로세서의 검증을 위해서 스타 돔 구조물 예제를 통해 조사하였으며, 수치 결과는 잘 수렴하고 모든 제약을 만족하였다. 제시된 최적설계 프로세스는 전체좌굴을 고려한 최적설계를 수행하기 위한 비교적 간단 방법이고, 실무 구조설계를 반영하는데 가능하다.
본 연구는 스페이스 트러스 구조물의 초기 형상을 결정하기 위해 밀도법을 이용한 위상최적화 기술을 고려하고자 한다. 대부분의 초기 형상설계는 다양한 최적화 방법을 활용하지 않고 설계자의 경험이나 시행착오적인 방법을 바탕으로 수행되고 있다. 이런 이유로 합리적이고 경제적인 최적화기술이 초기 형상설계에 도입되어야 한다. 따라서 본 연구에서는 스페이스 트러스 구조물을 대상으로 설계영역을 설정하고 위상최적화를 수행하여 최적의 재료분포를 찾은 뒤 크기최적화를 이용하여 최적부재 크기를 찾고자 한다. 이와 같이 밀도법을 이용한 위상 및 크기최적화를 병행하여 수행할 경우 합리적인 스페이스 트러스 구조물의 초기 형상을 도출할 수 있다.
대공간 구조는 형태저항구조로서, 기둥-보로 구성되는 일반적인 건축골조구조가 설계외력에 대해 휨 및 전단으로 저항되는 것에 반해, 구조물의 내부에 기둥이 없는 공간을 내포하는 대공간 구조는 축력 및 면내 단면력에 의해 저항되는 경우가 대부분이다. 이러한 특성상 공간구조에는 일반적으로 장스팬이 사용되는 경우가 많으며, 그 결과 일반적인 골조와는 달리, 부재에 발생하는 변형도가 작은 경우에도 큰 변형이 발생하는, 즉 대변형 혹은 유한변형을 동반하게 된다. 일반적으로 수치해석에 있어 비선형 해석이란 기하학적 비선형 및 재료적 비선형, 또는 이 두 가지를 동시에 고려한 복합 비선형 해석을 들 수가 있다. 본 논문에서는 유한요소법으로 기하학적 비선형을 고려한 비선형 평형방정식을 적용하고, 부재의 응력-변형률 관계를 이용하여 재료적 비선형성도 함께 고려하였다. 사용된 수치해석 기법은 불안정 경로의 해를 찾아갈 수 있는 호장법을 적용하여 하중-변위 곡선을 추적하였다. 또한, 해석 결과는 범용 유한요소 프로그램인 ABAQUS를 이용하여 비교 검토하였다. 본 연구의 수치 해석결과 제시한 평면 및 공간 트러스의 비탄성 비선형 거동을 정확하고 효율적으로 예측 가능한 것으로 나타났다.
트러스형 공간 구조물은 무주의 대공간을 덮을 수 있는 장점과 구조적 성질이 동일한 등가 연속체 쉘 로 치환하여도 비교적 정확한 해를 얻을 수 있다는 장점으로 인해 21세기 첨단 구조물의 한 장인 초대형 구조물 분야에 많이 활용되고 있으며, 효율적인 부재의 이용과 대량생산의 가능성으로 인해 많은 발전을 해 왔다. 그러나 이러한 쉘 형태의 공간 구조물은 구조 거동의 특성상 주로 구조안정문제가 구조설계에서 해결해야하는 핵심적인 기술력이 되며, 이를 어떻게 해결하여야 할 것인가의 문제는 아직도 많은 연구자들에게 난제로 남아 있다. 즉, 연속체 쉘 구조의 원리에서 긴 경간을 얇게 만들면, 뜀좌굴과 분기좌굴같은 불안정 거동이 나타나게 되며, 이러한 쉘형 구조 시스템에서 구조 불안정 문제의 특징은 초기 조건에 매우 민감하게 반응한다는 것이고, 이런 문제들은 수학적으로 비선형 문제에 귀착하게 된다. 따라서, 본 논문에서는 공간 프레임형 구조물의 불안정 현상을 살펴보기 위하여, 다양한 파라메타중 초기불완전량과 rise-span 비가 트러스 구조물의 불안정 현상에 미치는 영향을 알아보고자 하며, 이를 위해 1-자유절점 공간구조물, 2-자유절점 공간구조물, 다-자유절점 공간구조물을 예제로 채택하여 불안정 거동을 살펴보고자 한다.
본 논문의 목적은 공간 트러스 비선형 해석기법에 대한 수치해석적 장단점을 비교하고, 효율적인 해석기법을 제안하는 것이다. 사용된 해석기법은 하중 제어법으로 뉴턴-랩슨법, 수정 뉴턴-랩슨법, 할선-뉴턴법, 하중-변위 제어법으로 호장법, 증분일 제어법, 그리고 본 논문에서 제안한 하중-변위의 복합적 제어법으로 복합 호장법 , 복합 호장법Ⅱ, 복합 증분일 제어법이 있다. 공간 트러스에 대한 해석기법의 효율성 평가를 위하여 해의 정확성, 수렴성, 계산시간 등을 제시된 예에 비교한 결과 본 논문에서 제안한 하중-변위의 복합적 제어법의 신뢰성을 입증하였으며, 기하학적 비선형 해석 및 좌굴후 거동의 추적에 있어서 효율적이었다. 특히, 자유도수가 많은 공간 트러스의 좌굴하중 추척에 있어서는 복합 증분일 제어법이 효율적이었다.
Shell structure that is best used for the long span structure is a structure which can effectively resist against the external load. But these structure has instability like snap-through and bifurcation buckling, and it has a characteristic sensitive to the initial conditions. Therefore, to determine the analysis model of DDOF Space Truss and when the beating load was applied in model, we confirmed the changing results for height and load.
The purpose of this study is to get analytic solution of space truss using homotopy perturbation. A homotopy perturbation was derived by formulating a governing equation for a space truss, and a semi analytical solution was obtained by homotopy perturbation. In conclusion, the analytical solution of the simple nonlinear model using the homotopy perturbation was compared with the numerical analysis result.
This study aims to apply homotopy method to space truss composed of discrete members to obtain a semi-analytical solution. For the purpose of this research, a nonlinear governing equation of the structures is formulated in consideration of geometrical nonlinearity, and homotopy equation is derived. The result of carring out dynamic analysis on a simple model is compared to a numerical method of 4th order Runge-Kutta method(RK4).
This study aims to apply multistage homotopy perturbation method (MHPM) to SDOF space truss to obtain a semi-analytical solution. For the purpose, a nonlinear governing equation is derived in consideration of geometrical nonlinearity, and homotopy equation is formulated. The result of carrying out dynamic analysis on a simple model is compared to a numerical method of 4th order Runge-Kutta method (RK4), and the dynamic response by MHPM concurs with the numerical result.
As numbers of tunnel are increased, the necessity of temporary maintenance works of those tunnels is also increased. This study introduces new space truss frame system for the maintenace of tunnels. Proto-type model was analyzed and evaluated. The result shows that new system may contribute to save the maintenance cost and time.
본 연구는 터널의 유지, 보수, 보강에 필요한 가설공사용 스페이스 트러스 프레임 구조물을 소개한다. 기존 가설공사 시공방식과 장비들의 현황 및 문제점을 분석하고, 터널 설계의 핵심 구성요소를 파악함으로써, 제안된 새로운 가설 시공기술 시스템을 개발하는 과정을 순차적으로 설명한다. 그리고 개발된 가설 시스템을 발주처, 시공사, 터널 이용자 관점에서 사용성 및 경제성을 분석하고, 구조적인 안전성 검토와 최적단면 산정 평가를 상용 유한요소 해석프로그램인 ABAQUS 6.5로 구현하여 본 가설 시스템의 현장적용 기반을 구축한다.