검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 43

        4.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Flexible supercapacitors (FS) are ideal as power backups for upcoming stretchable electronics due to their high power density and good mechanical compliance. However, lacking technology for FS mass manufacturing is still a significant obstacle. The present study describes a novel method for preparing FS based on reduced graphene oxide (RGO) using the N+ plasma technique, in which N+ reduces graphene oxide on the surface of a cotton/polyester substrate. The effect of aloe vera (AV) as a natural reducing & capping agent and carbon nanotubes (CNT) as nanoconductors on the electrochemical performance of the electrodes is studied. FESEM and XPS were employed to investigate the electrodes' structural and chemical composition of electrodes. The galvanostatic charge–discharge curves of electrodes revealed the enhancement of the electrochemical activity of the as-prepared electrode upon additions of AV and CNT. The areal capacitance of the RGO, RGO/AV, and RGO/ AV/CNT supercapacitors at 5 mV/s was 511, 1244.5, and 1879 mF/cm2, respectively. The RGO electrode showed capacitive retention of 80.9% after 2000 cycles enhanced to 89.7% and 92% for RGO/AV and RGO/AV/CNT electrodes, respectively. The equivalent series resistance of the RGO electrode was 126.28 Ω, decreased to 56.62 and 40.06 Ω for RGO/AV and RGO/ AV/CNT electrodes, respectively.
        4,000원
        5.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nitrogen and phosphorous dual-doped carbon nanotubes (N,P/CNT) have been grown in a single-step direct synthesis process by CVD method using iron-loaded mesoporous SBA-15 support, as an electrode material for the energy storage device. For comparison, pristine nanotubes, nitrogen and phosphorous individually doped nanotubes were also prepared. The basic characterization studies clarify the formation of nanotubes and the elemental mapping tells about the presence of the dopant. Under three-electrode investigations, N,P/CNT produced a maximum specific capacitance of about 358.2 F/g at 0.5 A/g current density. The electrochemical performance of N,P/CNT was further extended by fabricating as a symmetric supercapacitor device, which delivers 108.6 F/g of specific capacitance for 0.5 A/g with 15 Wh/kg energy density and 250 W/kg power density. The observed energy efficiency of the device was 92.3%. The capacitance retention and coulombic efficiency were 96.2% and 90.6%, respectively, calculated over 5000 charge–discharge cycles.
        4,500원
        6.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the demand for flexible wearable electronic devices increases, the development of light, thin and flexible high-performance energy-storage devices to power them is a research priority. This review highlights the latest research advances in flexible wearable supercapacitors, covering functional classifications such as stretchability, permeability, self-healing and shapememory capabilities, as well as practical studies on energy harvesting capabilities.
        6,000원
        7.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Biomass-derived porous carbon is an excellent scientific and technologically interesting material for supercapacitor applications. In this study, we developed biomass-derived nitrogen-doped porous carbon nanosheets (BDPCNS) from cedar cone biomass using a simple KOH activation and pyrolysis method. The BDPCNS was effectively modified at different temperatures of 600 °C, 700 °C, and 800 ℃ under similar conditions. The as-prepared BDPCNS-700 electrode exhibited a high BET surface area of 2883 m2 g− 1 and a total pore volume of 1.26 cm3 g− 1. Additionally, BDPCNS-700 had the highest electrical conductivity (11.03 cm− 1) and highest N-doped content among the different electrode materials. The BDPCNS-700 electrode attained a specific capacitance of 290 F g− 1 at a current density of 1 A g− 1 in a 3 M KOH electrolyte and an excellent longterm electrochemical cycling stability of 93.4% over 1000 cycles. Moreover, the BDPCNS-700 electrode had an excellent energy density (40.27 Wh kg− 1) vs power density (208.19 W kg− 1). These findings indicate that BDPCNS with large surface areas are promising electrode materials for supercapacitors and energy storage systems.
        4,300원
        8.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Graphitic carbon nitride (g-C3N4) has attracted extensive attention in energy storage due to its suitable and tunable bandgap, high chemical/thermal stability, earth abundance and environmental friendliness. However, its conductivity should be improved to work as the electrode materials in supercapacitors. In this report, we have prepared a two-dimensional composite (CN-PANI) based on g-C3N4 and polyaniline (PANI) by in-situ polymerization, which can be efficiently applied as electrode material for supercapacitors. The introduction of PANI can increase the conductivity of the electrode, and the porous structure of g-C3N4 can provide enough channels for the transport of electrolyte ions and improve the electrode stability. As a result, the obtained CN-PANI demonstrates excellent specific capacitance (234.0 F g− 1 at 5 mV/s), good rate performance and high cycling stability (86.2% after 10,000 cycles at 50 mV/s), showing great potential for high-rate supercapacitors.
        4,000원
        9.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Biomass carbon materials with high rate capacity have great potential to boost supercapacitors with cost effective, fast charging– discharging performance and high safety requirements, yet currently suffers from a lack of targeted preparation methods. Here we propose a facile FeCl3 assisted hydrothermal carbonization strategy to prepare ultra-high rate biomass carbon from apple residues (ARs). In the preparation process, ARs were first hydrothermally carbonized into a porous precursor which embedded by Fe species, and then synchronously graphitized and activated to form biocarbon with a large special surface area (2159.3 m2 g− 1) and high degree of graphitization. The material exhibited a considerable specific capacitance of 297.5 F g− 1 at 0.5 A g− 1 and outstanding capacitance retention of 85.7% at 10 A g− 1 in 6 M KOH, and moreover, achieved an energy density of 16.2 Wh kg− 1 with the power density of 350.3 W kg− 1. After 8000 cycles, an initial capacitance of 95.2% was maintained. Our findings provide a new idea for boosting the rate capacity of carbon-based electrode materials.
        4,300원
        10.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The recycling of solid waste materials to fabricate carbon-based electrode materials is of great interest for low-cost green supercapacitors. In this study, porous carbon foam (PCF) was prepared from waste floral foam (WFF) as an electrode material for supercapacitors. WFF was directly carbonized at various temperatures of 600, 800, and 1,000 oC under an inert atmosphere. The WFF-derived PCF (C-WFF) was found to have a specific surface area of 458.99 m2/g with multi-modal pore structures. The supercapacitive behavior of the prepared C-WFF was evaluated using a three-electrode system in a 6 M KOH aqueous electrolyte. As a result, the prepared C-WFF as an active material showed a high specific capacitance of 206 F/g at 1 A/g, a rate capability of 36.4 % at 20 A/g, a specific power density of 2,500 W/kg at an energy density of 2.68 Wh/kg, and a cycle stability of 99.96 % at 20 A/g after 10,000 cycles. These results indicate that the C-WFF prepared from WFF could be a promising candidate as an electrode material for high-performance green supercapacitors.
        4,000원
        11.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrochemical capacitive properties of biomass-derived activated carbons are closely dependent on their microscopic structures. Here, activated carbon fibers (ACFs) were prepared from natural cattail fibers by carbonization and further chemical activation. The activation temperature affected on the microscopic structures and electrochemical properties of the activated carbon fibers. The results show that the optimum activation temperature is 800 °C. And the as-prepared ACF- 800 possesses high micropore specific surface area of 710.4 m2 g− 1 and micropore volume of 0.313 cm3 g− 1, respectively. For supercapacitor applications, the ACF-800 displays a high specific capacitance of 249 F g− 1 at a current density of 0.05 A g− 1, excellent rate performance and cycle stability in a three-electrode system. The excellent electrochemical performance indicated that the obtained activated carbon fibers could be a promising electrode material in supercapacitor.
        4,000원
        13.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the sulfonic acid group was introduced into the resorcinol–formaldehyde (RF) microspheres by the addition of p-phenolsulfonic acid during the polycondensation process of RF. The hydrophilicity of the sulfonated RF allowed KOH to infiltrate inside the microspheres, which enhanced the formation of mesopores in the carbon microspheres during the activation process by KOH. SEM and TEM observations and N2 adsorption measurements verified the formation of abundant mesopores in the porous carbon microspheres. The BET surface area of these mesoporous carbons exceeded 2000 m2/ g. In 17 m NaClO4 “water-in-salt” (WIS) electrolyte-based supercapacitor, the synthesized mesoporous carbon exhibited high specific capacitance of 170 F/g at current density of 0.5 A/g, comparable to those in regular KOH electrolyte. When graphite was used as current collectors, the symmetric cell could operate at 2.5 V, and the mesoporous carbon exhibited an energy density of 43 Wh/kg at power density of 0.25 kW/kg, and 25 Wh/kg at power density of 6.25 kW/kg, respectively, which were superior to those using Pt or stainless steel as current collectors. The mesoporous carbon/graphite was an excellent electrode in new-generation “WIS” electrolyte-based high-voltage supercapacitor due to their high energy and power density.
        4,000원
        14.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        높은 안전성과 견고한 기계적 특성을 가진 고체상 슈퍼커패시터는 차세대 에너지 저장 장치로서 세계적 관심을 끌고 있다. 슈퍼커패시터의 전극으로서 경제적인 탄소 기반 전극이 많이 사용되는데 수계 전해질을 도입하는 경우 소수성 표 면을 가진 탄소 기반 전극과의 계면 상호성이 좋지 않아 저항이 증가한다. 이와 관련하여 본 연구에서는 전극 표면에 산소 플라즈마 처리를 하여 친수화된 전극과 수계 전해질 사이의 향상된 계면 성질을 기반으로 더 높은 전기화학적 성능을 얻는 방법을 제시한다. 풍부해진 산소 작용기들로 인한 표면 친수화 효과는 접촉각 측정을 통해 확인하였으며, 전력과 지속시간을 조절함으로써 친수화 정도를 손쉽게 조절할 수 있음을 확인하였다. 수계 전해질로 PVA/H3PO4 고체상 고분자 전해질막을 사 용하였으며 프레싱하여 전극에 도입하였다. 15 W의 낮은 전력으로 5초간 산소 플라즈마 처리를 시행하는 것이 최적 조건이 었으며 슈퍼커패시터의 에너지 밀도가 약 8% 증가하였다.
        4,000원
        15.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon xerogels (CXs) with three-dimensional (3D) structure, unusual surface, physical, electrical and mechanical properties and their electrically conductive polymer polypyrrole (PPy) composites were synthesized as electrode materials for supercapacitors. The effect of different resorcinol/formaldehyde (R/C) ratios, whether solvent exchange with or without acetone and polypyrrole addition on the physicochemical (FTIR, XRD, BET, SEM and TGA) and electrochemical properties (CV, 1000 cycles) of the synthesized materials were investigated. It was observed that the R/C ratio and the solvent exchange process prior to drying affect the specific surface areas and the pore size distributions, thereby positively affecting the specific capacitance. PPy film thickness was observed to be effective in the specific capacitance of the electrode in PPy composite synthesis. Among the synthesized materials, the highest specific capacitance values belong to polypyrrole/carbon xerogel composites. As a result of the analysis and calculations, it was found that the highest specific capacitance belongs to CX2/PPy composite with 599 Fg− 1 at 5 mVs− 1. CX2/PPy composite has been found to have a capacitance retention rate of 80.30% at the end of 1000 cycles.
        5,800원
        16.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In view of the growing need for clean energy, supercapacitors (SC), especially those based on activated carbon (AC) and organic electrolyte are attracting great attention for their theoretically infinite life span. However, they still age much faster than expected due to certain mechanisms. Several researches is being conducted to understand these mechanisms, but so far, the chemical reactions at the phase boundary of the activated carbon electrodes and organic electrolyte have been very unclear. Some pathways have not yet been investigated; there is no research on the reactions that can take place between acetonitrile in the vapor phase and the oxides presented on the surface of activated carbons. For this reason, in this study, divided into two parts, the first based on a thermal simulation and the second based on an experimental study, we have systematically described the ageing mechanisms by determining the gas-phase reactions that can occur at the electrode–electrolyte interface. On the one hand, a thermal model of a supercapacitor cell using activated carbon and organic electrolyte technology has been developed. This model allowed us to study the temperature distribution of supercapacitors, and thus to determine the thermodynamic parameters related to the phenomena produced at the electrode–electrolyte interface. On the other hand, a thermo-gravimetric analysis coupled with gas phase infrared spectroscopy on the activated carbons of an aged supercapacitor of the same technology as that used in the simulation was carried out. The results obtained made it possible to identify the chemical groups produced by ageing.
        4,200원
        17.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.
        4,000원
        19.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hierarchically porous carbon materials with high nitrogen functionalities are extensively studied as highperformance supercapacitor electrode materials. In this study, nitrogen-doped porous carbon textile (N-PCT) with hierarchical pore structures is prepared as an electrode material for supercapacitors from a waste cotton T-shirt (WCT). Porous carbon textile (PCT) is first prepared from WCT by two-step heat treatment of stabilization and carbonization. The PCT is then nitrogendoped with urea at various concentrations. The obtained N-PCT is found to have multi-modal pore structures with a high specific surface area of 1,299 m2 g−1 and large total pore volume of 1.01 cm3 g−1. The N-PCT-based electrode shows excellent electrochemical performance in a 3-electrode system, such as a specific capacitance of 235 F g−1 at 1 A g−1, excellent cycling stability of 100 % at 5 A g−1 after 1,000 cycles, and a power density of 2,500 W kg−1 at an energy density of 3.593 Wh kg−1. Thus, the prepared N-PCT can be used as an electrode material for supercapacitors.
        4,000원
        20.
        2021.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous carbons have been widely used as electrode material for supercapacitors. However, commercial porous carbons, such as activated carbons, have low electrochemical performance. Nitrogen-doping is one of the most promising strategies to improve electrochemical performance of porous carbons. In this study, nitrogen self-doped porous carbon (NPC) is prepared from melamine foam by carbonization to improve the supercapacitive performance. The prepared NPC is characterized in terms of the chemical structures and elements, morphology, pore structures, and electrochemical performance. The results of the N2 physisorption measurement, X-ray diffraction, and Raman analyses reveal that the prepared NPC has bimodal pore structures and pseudo-graphite structures with nitrogen functionality. The NPC-based electrode exhibits a gravimetric capacitance of 153 F g−1 at 1 A g−1, a rate capability of 73.2 % at 10 A g−1, and an outstanding cycling ability of 97.85% after 10,000 cycles at 10 A g−1. Thus, the NPC prepared in this study can be applied as electrode material for high-performance supercapacitors.
        4,000원
        1 2 3