Chitin and chitosan, abundant biopolymers from shellfish, crustaceans, and fungal hyphae, have diverse applications in food, biomedical, and industrial sectors. Also, insects offer a one of the chitin and chitosan source, yet research into the biological processes of chitin and chitosan within insects remains inadequate. To investigates the safety and benefits of insect-derived chitin and chitosan, we orally administered crab-derived and insect-derived chitin and chitosan to mice and compared RNA expression. NGS derived sequences were obtained and DEG and GO analyses were performed. This study displays a chance to progress the application of edible insects.
Because of the physiological and immunological similarities between pigs and humans, porcine embryonic stem cells (ESCs) have been identified as important candidates in preliminary studies on human disease. A comparative understanding of pig ESCs with the human is required to achieve these goals. To gain insights into pig stem cells, the transcriptome of pig ES-like cells were compared with pig preimplantation embryos and human/mouse pluripotent stem cells by RNA-seq analysis. As a result, pig stem cells were more similar to late epiblasts of pig preimplantation embryos than early ICM as revealed by transcriptome analysis, suggesting that pig stem cells are in a developmentally primed state. Moreover, the physiological and biological functions of pig ESCs were more similar to those of human PSCs than to those of mouse PSCs, as determined by direct differentiation and GO/KEGG term analysis. Overall, our data indicate that pig ESCs are in a primed pluripotent state resembling human PSCs. Our findings will facilitate both the development of large animal models for human stem cell therapy and the generation of pluripotent stem cells from other domestic animals for agricultural use.
This work was supported by the Korea Institute of Planning and Evaluation for Technology in food, agriculture, forestry, and fisheries (IPET) through the Development of High Value-Added Food Technology Program funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA; 118042-03-1-HD020), and partially supported by the grants from the Agenda Program of Rural Development Administration, Republic of Korea (No. PJ01362402)
Pheromone biosynthesis in the pheromone gland is stimulated by pheromone biosynthesis activating neuropeptide (PBAN) produced in the suboesophageal ganglion. PBAN binds its receptor and transduces biological signal into the molecules for the pheromone biosynthesis. To understand pheromone biosynthesis pathway in legume pod borer, Maruca vitrata, transcriptome of the pheromone gland was analyzed. A total of 191 contigs involved in the pheromone biosynthesis were identified. Putative pheromone biosynthetic pathways for sex pheromone components in M. vitrata were proposed through transcriptomic analysis.
The hornets Vespa crabro and V. analis are widely distributed in Asia and are known to be aggressive when disturbed, resulting in frequent stinging accidents. To investigate the differences in venom properties and toxicities between these two hornets, the transcriptomic profiles of venom glands, in conjunction with the venom components, were analyzed and compared. A total of 35 venom-specific genes were identified in both venom gland transcriptomes, but their transcriptional profiles were different between V. crabro and V. analis. In addition, the major venom components were identified and confirmed by mass spectroscopy. Prepromastoparan, vespid chemotactic precursor and vespakinin were the top three genes most prevalently transcribed in the venom gland of V. crabro, and their transcription rates were 112-, 16- and 161-fold higher, respectively, compared with those in V. analis, as judged by FPKM values. In the venom gland of V. analis, however, vespid chemotactic precursor was the most abundantly transcribed gene, followed by premastoparan and vespakinin. In general, most major venom genes were more abundantly expressed in V. crabro, whereas some minor venom genes exhibited higher transcription rates in V. analis, including muscle LIM protein, troponin, paramyosin, calponin, etc. Our findings reveal that the overall venom components of V. crabro and V. analis are similar, but that their expression profiles and levels are considerably different. The comparison of venom gland transcriptomes suggests that V. crabro likely produces venom with more highly enriched major venom components, which has potentially higher toxicity compared with V. analis venom.
Vespa crabro is a cosmopolitan social wasp species whereas Vespa analis is commonly found in Asia. Both species are widely distributed in Korea and known to be aggressive when disturbed, resulting in frequent sting accidents. Although major venom components of well known Vespa wasps have been reported, no comparative transcriptomic analysis of venom gland between V. crabro and V. analis has been conducted to date. To investigate the differences in venom properties between these two wasps, total RNA was extracted from each venom gland and used for RNA-sequencing. A total of 31 venom-specific genes were identified in both venom gland transcriptomes but their expression profiles were different between V. crabro and V. analis. Venom allergen 5, premastoparan A and phospholipase A were the top three genes that were most prevalently transcribed in the venom gland of V. crabro, and their transcription rates were 902-, 112- and 4164-fold higher compared with V. analis, respectively, as judged by FPKM values. Their differential transcription profiles were confirmed by quantitative real-time PCR. In the venom gland of V. analis, however, premastoparan A was most abundantly transcribed gene, followed by calponin and tropomysin. In general, most venom-specific genes were more abundantly expressed in V. crabro but some genes exhibited higher transcription rates in V. analis, including muscle LIM protein, troponin, paramyosin, calponin, etc. Our findings suggest that V. crabro produce venom with much more enriched venom components, thereby with higher toxicity compared with V. analis.
Background : Narcissus tazetta (N. tazetta), belonging to the Amaryllidaceae family, is a bulbous plant distributed in Korea, China, and Japan. Amaryllidaceae family plants contained galantamine exhibiting dominant and selective acetylcholinesterase inhibition. In this study, transcriptome analysis of N. tazetta was carried out.
Methods and Results : The results of studies conducted in duplicate revealed the presence of a total of 305,228 and 370,567 unigenes, acquired from 69,605,788 and 59,770,506 raw reads, respectively, after trimming the raw reads using CutAdapt, assembly using Trinity package, and clustering using CD-Hit-EST. The resulting unigenes were annotated based on the NCBI Non-redundant protein database, as N. tazetta is genetically closer to Phoenix dactylifera and Elaeis guineensis. The unigenes of N. tazetta were clustered into three major categories: biological processes, cellular components, and molecular functions, with 51 functional sections. A large number of unigenes (11,371 and 15,535 from replicates 1 and 2, respectively) were categorized in the biological process cluster, followed by the cellular component cluster, and the molecular function cluster. With respect to the biological process category, the unigenes were assigned to 23 functional sections. The majority of unigenes were involved in cellular processes. Among the unigenes clustered as the cellular component with 14 sections, most genes were associated with the cell and cell parts. Furthermore, 156,584 and 201,353 unigenes, respectively, matched the molecular function cluster with 14 sections, of which most unigenes were related to metabolic process and cellular process.
Conclusion : This study provides functional information of N. tazetta and highlights the use of the Illumina platform for transcriptome research.
Background : Lycoris radiata (L. radiata), which belongs to Amaryllidaceae family, is native to Northeast Asia including Korea, Japan, and China. It is known for its high ornamental and medicinal values. Extensive research has been conducted in a several fields, including molecular biology, morphology, pharmacology, physiology, palynology, and chromosomal biology. The plant is notable for its various biological activities, including anti-cancer, anti-malarial, anti-microbial, reduction in blood pressure, anti-inflammatory, cytotoxicity, and neuroprotective effects.
Methods and Results : The results of studies conducted in duplicate revealed the presence of a total of 325,609 and 404,019 unigenes, acquired from 9,913,869,968 and 10,162,653,038 raw reads, respectively, after trimming the raw reads using CutAdapt, assembly using Trinity package, and clustering using CD-Hit-EST. The resulting unigenes were annotated based on the NCBI Non-redundant protein database, as L. radiata is genetically closer to Elaeis guineensis and Phoenix dactylifera. The unigenes of L. radiata were clustered into three major categories: biological processes, cellular components, and molecular functions, with 51 functional sections. A large number of unigenes (203,157 and 224,813 from replicates 1 and 2, respectively) were categorized in the biological process cluster, followed by the cellular component cluster, and the molecular function cluster. With respect to the biological process category, the unigenes were assigned to 23 functional sections. The majority of unigenes were involved in cellular processes. Among the unigenes clustered as the cellular component with 14 sections, most genes were associated with the cell and cell parts. Furthermore, 78,017 and 88,817 unigenes, respectively, matched the molecular function cluster with 14 sections, of which most unigenes were related to binding and catalytic activity.
Conclusion : This study provides functional information of L. radiata and highlights the use of the Illumina platform for transcriptome research.
Background : Momordica charantia L. (M. charantia) is a member of the family Cucurbitaceae, used as a medicine herb in traditional medicine. In this study, we present the sequencing, de novo assembly and analysis of the transcriptome of M. charantia and provide a global description of relationship between putative phenylpropanoid and flavonoid biosynthesis genes and alteration of phenylpropanoid and flavonoid content during different organs and plantlet of M. charantia. Methods and Results : The transcriptome of M. charantia was constructed by using an Illumina Nexteseq500 sequencing system. Out of 68,073,862 total reads, approximately 88,703 unigenes were identified with a length of 898 bp. Alternatively, transcriptomic data, 10cDNAs (McPAL, McC4H, Mc4CL, McCOMT, McCHS, McCHI, McF3H, McFLS, McDFR and Mc3GT) encoded phenylpropanoid and flavonoid biosynthetic genes. The expression levels and the accumulation of trans-cinnamic acid, benzoic acid, 4-hydroxyvbenzoic acid, p-coumaric acid, chlorogenic acid, caffeic acid, catechin hydrate, ferulic acid, and rutin were investigated in different organs and plantlets. Mainly, phenylpropanoids and flavonoids accumulated in leaves and flowers, whereas low levels accumulated in roots. Collectively, these results indicate that the putative McPAL, McC4H, McCOMT, McFLS, and Mc3GT might be key factors for controlling phenylpropanoid and flavonoid contents in M. charantia. Conclusion : In this study, we present the sequencing, de novo assembly and analysis of the transcriptome of M. charantia. We also compared gene expression and compound analysis of phenylpropanoid and flavonoid in different organs and plantlet of M. charantia. These results indicate that McPAL, McC4H, McCOMT, McFLS, and Mc3GT are key regulators of phenylpropanoid and flavonoid accumulation in M. charantia
Gibberellic acid (GA) is a well-characterized plant hormone, which plays a critical role in various plant growth and development. including stem elongation, floral indcution and seed development. GA is known to cause enlargement of ripening fruits and, especially in grapevines, GA shows a unique function: the induction of seedlessness in seeded grape varieties. However, despite extensive previous studies about GA, there has been no clear verification of the mechanism that induces seedlessness in grapes. To understand how GA treatment results in artificial parthenocarpy of seeded grapes at molecular levels, we analyzed transcriptional changes in seeded grapes with and without GA application in various inflorescence developmental stages using RNA-seq. At 14 days before flowering (DBF), seeded grapes were treated with 100 ppm GA and clusters were collected at three developmental stages: 7 DBF, full bloom, and 5 days after flowering (DAF). Of a total of 28,974 genes that were mapped to grape genome reference sequences, 7,013 and 9,064 genes were up- and down-regulated, respectively, in the GA-treated grape as compared to the non-GA-treated control at 7 DBF, full bloom, and 5 DAF. Clustering analysis revealed that these genes could be grouped into 9 clusters with different expression patterns. We also carried out functional annotation based on gene ontology categories. There were significant differences in the expression of the GA and auxin-related gene families. These findings expand our understanding of the complex molecular and cellular mechanisms of GA-induced parthenocarpy of grapes and provide a foundation for future studies on seed development in grapevines.