검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 88

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Deep learning-based computer vision anomaly detection algorithms are widely utilized in various fields. Especially in the manufacturing industry, the difficulty in collecting abnormal data compared to normal data, and the challenge of defining all potential abnormalities in advance, have led to an increasing demand for unsupervised learning methods that rely on normal data. In this study, we conducted a comparative analysis of deep learning-based unsupervised learning algorithms that define and detect abnormalities that can occur when transparent contact lenses are immersed in liquid solution. We validated and applied the unsupervised learning algorithms used in this study to the existing anomaly detection benchmark dataset, MvTecAD. The existing anomaly detection benchmark dataset primarily consists of solid objects, whereas in our study, we compared unsupervised learning-based algorithms in experiments judging the shape and presence of lenses submerged in liquid. Among the algorithms analyzed, EfficientAD showed an AUROC and F1-score of 0.97 in image-level tests. However, the F1-score decreased to 0.18 in pixel-level tests, making it challenging to determine the locations where abnormalities occurred. Despite this, EfficientAD demonstrated excellent performance in image-level tests classifying normal and abnormal instances, suggesting that with the collection and training of large-scale data in real industrial settings, it is expected to exhibit even better performance.
        4,200원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현대사회에서 미술교육과 미술작품 제작 현장은 정보와 이미 지를 비롯한 폭발적인 성장 속에서 새롭게 전개되고 있다. 이 러한 사회·문화적 방향성의 모색이 필요하고 새로운 관점의 재정립이 요구되는 상황에서 인간과 교육을 둘러싼 사회에서의 미술교육에 대한 새로운 방법론적 접근이 필요하다. 현재 우리 나라 미술교육현장에서 수채화는 점점 도태되어 간다. 화랑가 의 유화 선호, 재료와 도구 사용에 대한 인식, 기법의 난이도 등으로 인해 다른 장르의 그림보다 소외되고 있다. 그 이유 중 가장 큰 문제점은 기초과정을 넘어선 작품 만들기 과정에서 드 러나는데 그것이 바로 보조재료 사용에 대한 미숙함이다. 수채화 제작은 기름을 사용하는 유화와는 달리 물을 사용함으 로 예술의 표현형식과 감상 효과에서 동양인의 체취에 더 친근 감을 주는 매체이다. 수채화 물감을 이용한 작업은 그 자체로 하나의 도전이라고 할 수 있을 정도로 어렵지만, 보조재료를 이 용한 기법을 활용한다면 더 수준 높은 작품성을 발휘할 수 있을 것이다. 수채화에서 중요한 점은 수채화 물감이 투명체 매체라 는 것인데 미세한 입자로 이루어져 있어 어두운색 위에 밝은색 을 덧칠할 수 없다는 것 때문에 작품제작 시 상당한 난관에 부 딪혀 쉽게 작업을 포기하게 되는 것이 현실이다. 본 연구에서는 그런 점을 개선하기 위해 현대미술에서 수채 화 채색작업을 중심으로 <마스킹 액(Masking fluid)> 보조재 료의 활용방안을 제시하고자 한다. 마스킹액을 이용한 여러 가 지 수채화 채색방법과 보조재료의 활용법을 제안함으로써 현장 에서 갖는 문제점에 대해 논의하고, 더욱 질 높은 미술교육과 작품제작에 이바지할 방안을 새롭게 모색하고자 한다.
        6,100원
        3.
        2023.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnO/Cu/ZnO (ZCZ) thin films were deposited at room temperature on a glass substrate using direct current (DC) and radio frequency (RF, 13.56 MHz) magnetron sputtering and then the effect of post-deposition electron irradiation on the structural, optical, electrical and transparent heater properties of the films were considered. ZCZ films that were electron beam irradiated at 500 eV showed an increase in the grain sizes of their ZnO(102) and (201) planes to 15.17 nm and 11.51 nm, respectively, from grain sizes of 13.50 nm and 10.60 nm observed in the as deposited films. In addition, the film’s optical and electrical properties also depended on the electron irradiation energies. The highest opto-electrical performance was observed in films electron irradiated at 500 eV. In a heat radiation test, when a bias voltage of 18 V was applied to the film that had been electron irradiated at 500 eV, its steady state temperature was about 90.5 °C. In a repetition test, it reached the steady state temperature within 60 s at all bias voltages.
        4,000원
        4.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ITO 투명 전극 필름은 디스플레이, 전기 자동차 등 산업 전 범위에서 널리 사용되는 전자 재료이다. 본 연구에서는 이러한 indium tin oxide (ITO) 필름의 열성형 안정성을 향상시키기 위하여 Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) 전도성 고분자 코팅 용액 조성을 결정하였다. 1000 S/cm의 고 전도성을 보이는 PEDOT:PSS 용액에 끓는점이 각기 다른 4가지 종류의 용매를 희석하였고, 코팅 전 후 면저항 변화를 분석하였다. 또한 380~800 nm 영역의 광 투과율 분 석 및 Raman 스펙트럼 분석을 통하여 PEDOT:PSS 박막이 코팅된 ITO 투명 전극의 전기적 특성 결정 메커니즘을 규명하였 다. 230°C 열성형 공정 결과 ITO 필름은 113% 연신 상태에서 이미 전기 전도성을 읽었지만, ethylene glycol을 희석 용매로 사용하여 얻어진 전도성 고분자 박막이 적용된 ITO 필름은 126% 고 연신 상태에서도 초기 60 Ω/sq 면저항을 246 Ω/sq로 유지하는 우수한 전기 전도성을 보였다.
        4,000원
        6.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Essential macleod program (EMP) was used to optimize the transmittance of the transparent conducting layers in an oxidemetal- oxide structure. For EMP simulation, the optical coefficient of the material was extracted using an ellipsometer. Following the simulation studies, oxide-metal-oxide samples were fabricated experimentally, and their optical and electrical properties were analyzed. Multilayer SiInZnO/Ag/Siinzno (S/A/S) structures were grown on glass substrates using radio frequency (RF) and direct current (DC) sputtering at room temperature. Due to the occurrence of destructive interference at the metal and oxide interface, the S/A/S structure exhibited excellent optical properties. As the thickness of the top and bottom oxide layers was increased, the transmittance spectrum was red-shifted due to partial wave interference at the Ag interface. Change in thickness of the top oxide layer had a greater effect on the transmittance than that of the bottom oxide layer. This was due to the difference in refractive index occurring at each interface. Change in Ag thickness shifted the absorption edge in the short wavelength region. Whereas electrical properties, such as sheet resistance and carrier concentration, were found to be dependent on thickness of the sandwiched metal layer. An excellent figure of merit of 63.20 ×10−3Ω−1 was obtained when the thickness of the Ag layer was 11 nm, and the top and bottom oxide layer thickness were 45 and 60 nm, respectively. These values suggest promising optoelectronic properties and are encouraging for future transparent electrode applications.
        4,000원
        7.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This work reports the fabrication of a flexible Photodetector (PD) using Carbon Dots (CDs)/Polymer composite for Deep UV (DUV) photodetection. The CDs have been prepared using a simple and inexpensive heating process. The syncretic studies reveal the disordered graphitic core with surface functional groups and the excitation-dependent character of CDs. The synthesized CDs are stabilized via Poly Vinyl Alcohol (PVA) through a synergistic effect and investigated for different compositions (2–10 weight %) of CDs. The CDs/PVA composites shows improved absorbance at 208 and 335 nm compared to pure CDs owing to the bonding between them. This advantageous property of high absorption and photo response in the DUV region is utilized by employing CDs/PVA composite as a photo-sensing layer on the ITO-coated PET substrate in the PD. The performance of the PD was measured under dark, short (254 nm) and long (365 nm) UV region. Among all the compositions, 4% CDs/PVA PD exhibits superior performance in terms of high photo-to-dark current ratio (IPh/Id), responsivity and detectivity. The PD functioning and other parameters are discussed in detail and reported.
        4,200원
        8.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 나노섬유를 제조하는데 빠르고 효과적인 전기방사법을 이용하여 PVA(Polyvinyl alcohol)와 AgNO3를 혼합하여 제조한 용액을 금속산화물 기반 나노 섬유로 이루어진 투명 전극을 제조하고 그 특성을 분석하였다. PVA/AgNO3 혼합 용액을 전기방사법을 이용하여 유리기판 위에 나노 섬유 구조체 형태로 방사하여 250 ℃에서 2 시간 동안 열처리 과정을 통해 전기 전도성이 향상된 은 나노 섬유 기반 투명 전극을 제조하였다. 제조된 투명전극은 four-point probe 장비를 이용하여 전기적 특성을 분석하였으며, UV - Vis spectrophotometer 를 이용하여 제조된 투명전극의 투과도를 확인하였다. 또한, Scanning Electron Microscopy (SEM)과 Energy Dispersive Spectrometer(EDS)를 통해 은 나노 섬유의 표면 특성과 성분을 확인하였다. 이러한 분석들을 통해, 전기 방사 시간에 따른 면 저항과 투과도의 최적화된 조건을 확인할 수 있었으며, 은 나노 섬유로 이루어진 투명 전극은 전기적, 광학적, 기계적 특성이 우수하여 태양전지, 디스플레이, 터치스크린과 같은 차세대 유연 디스플레이에 적용 가능성을 보여주었다.
        4,000원
        9.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of growth variables and post-growth annealing on the optical, structural and electrical properties of magnetron-sputtered Ga0.04Mg0.10Zn0.86O films are characterized in detail. It is observed that films grown from pure oxygen plasma showed high resistivity, ~102 Ω·cm, whereas films grown in Ar plasma showed much lower resistivity, 2.0 × 10− 2 ~ 1.0 × 10−1 Ω·cm. Post-growth annealing significantly improved the electrical resistivity, to 4.3 ~ 9.0 × 10−3 Ω·cm for the vacuum annealed samples and to 1.3 ~ 3.0 × 10−3 Ω·cm for the films annealed in Zn vapor. It is proposed that these phenomena may be attributed to the improved crystalline quality and to changes in the defect chemistry. It is suggested that growth within oxygen environments leads to suppression of oxygen vacancy (Vo) donors and formation of Zn vacancy (VZn) acceptors, resulting in highly resistive films. After annealing treatment, the activation of Ga donors is enhanced, Vo donors are annihilated, and crystalline quality is improved, increasing the electron mobility and the concentration. After annealing in Zn vapor, Zn interstitial donors are introduced, further increasing the electron concentration.
        4,000원
        10.
        2021.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent, photocatalytic, and self-cleaning TiO2 thin film is developed by TiO2 sol-gel coating on glass and polycarbonate (PC) substrates. Acetyl acetone (AcAc) suppresses the precipitation of TiO2 by forming a yellowish (complex) transparent sol-gel. XPS analysis confirms the presence of Ti2p and O1s in the thin films on glass and PC substrates. The TiO2- sol is prepared by stabilizing titanium (IV) isopropoxide (TTIP) with diethylamine and methyl alcohol. The addition of AcAcsilane coupling solution to the TiO2-sol instantaneously turns to yellowish color owing to the complexing of titanium with AcAc. The AcAc solution substantially improves the photocatalytic property of the TiO2 coating layer in MB solutions. The coated TiO2 film exhibits super hydrophilicity without and with light irradiation. The TiO2 thin film stabilized by adding 8.7 wt% AcAc shows the highest photo-degradation for methylene blue (MB) solution under UV light irradiation. Also, the optimum photocatalytic activity is obtained for the 8.7 wt% AcAc-stabilized TiO2 coating layer calcined at 450 oC. The thin-films on glass exhibit fast self-cleaning from oleic acid contamination within 45 min of UV-light irradiation. The appropriate curing time at 140 oC improves the anti-fogging and thermal stability of the TiO2 film coated on PC substrate. The watermark-free PC substrate is particularly beneficial to combat fogging problems of transparent substrates.
        4,000원
        12.
        2020.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A transparent quantum dot (QD)-based light-emitting diode (LED) with silver nanowire (Ag NW) and indium-tin oxide (ITO) hybrid electrode is demonstrated. The device consists of an Ag NW-ITO hybrid cathode (-), zinc oxide, poly (9- vinylcarbazole) (PVK), CdSe/CdZnS QD, tungsten trioxide, and ITO anode (+). The device shows pure green-color emission peaking at 548 nm, with a narrow spectral half width of 43 nm. Devices with hybrid cathodes show better performances, including higher luminance with higher current density, and lower threshold voltage of 5 V, compared with the reference device with a pure Ag NW cathode. It is worth noting that our transparent device with hybrid cathode exhibits a lifetime 9,300 seconds longer than that of a device with Ag NW cathode. This is the reason that the ITO overlayer can protect against oxidization of Ag NW, and the Ag NW underlayer can reduce the junction resistance and spread the current efficiently. The hybrid cathode for our transparent QD LED can applicable to other quantum structure-based optical devices.
        4,000원
        13.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recent advances in technology using ultra-thin noble metal film in oxide/metal/oxide structures have attracted attention because this material is a promising alternative to meet the needs of transparent conduction electrodes (TCE). AZO/ Ag/AZO multilayer films are prepared by magnetron sputtering for Cu2ZnSn(S,Se)4 (CZTSSe) of kesterite solar cells. It is shown that the electrical and optical properties of the AZO/Ag/AZO multilayer films can be improved by the very low resistivity and surface plasmon effects due to the deposition of different thicknesses of Ag layer between oxide layers fixed at AZO 30 nm. The AZO/Ag/AZO multilayer films of Ag 15 nm show high mobility of 26.4 cm2/Vs and low resistivity and sheet resistance of 3.58*10−5 Ωcm and 5.0 Ω/sq. Also, the AZO/Ag (15 nm)/AZO multilayer film shows relatively high transmittance of more than 65% in the visible region. Through this, we fabricated CZTSSe thin film solar cells with 7.51% efficiency by improving the short-circuit current density and fill factor to 27.7 mV/cm2 and 62 %, respectively.
        4,000원
        14.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters – the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT – to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.
        4,000원
        15.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The reduced graphene oxide/single-wall carbon nanotubes composites are coated onto the polyurethane substrate using spray coating technique to produce a stretchable and semi-transparent supercapacitor. The electrochemical properties of the stretchable and semi-transparent full device as a function of stretching cycles are characterized using electrochemical impedance spectroscopy (EIS), cyclic voltammetry and galvanostatic charge/discharge tests. The EIS and charge/discharge curves of the stretchable and semi-transparent supercapacitor exhibit good capacitive behavior even after prolonged stretching cycles up to 100. The highest capacitance value of the stretchable and semi-transparent supercapacitor (unbent) is 21.4 F g−1. The capacitance value of the stretchable and semi-transparent supercapacitor is retained 62% after 100th stretching with application of 3000th galvanostatic charge/discharge cycles.
        4,000원
        16.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Homogeneous multicomponent indium gallium zinc oxide (IGZO) ceramics for transparent electrode targets are prepared from the oxides and nitrates as the source materials, and their properties are characterized. The selected compositions were In2O3:Ga2O3:ZnO = 1:1:2, 1:1:6, and 1:1:12 in mole ratio based on oxide. As revealed by X-ray diffraction analysis, calcination of the selected oxide or nitrides at 1200oC results in the formation of InGaZnO4, InGaZn3O6, and InGaZn5O8 phases. The 1:1:2, 1:1:6, and 1:1:12 oxide samples pressed in the form of discs exhibit relative densities of 96.9, 93.2, and 84.1%, respectively, after sintering at 1450oC for 12 h. The InGaZn3O6 ceramics prepared from the oxide or nitrate batches comprise large grains and exhibit homogeneous elemental distribution. Under optimized conditions, IGZO multicomponent ceramics with controlled phases, high densities, and homogeneous microstructures (grain and elemental distribution) are obtained.
        4,000원
        17.
        2019.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent conducting electrodes are essential components in various optoelectrical devices. Although indium tin oxide thin films have been widely used for transparent conducting electrodes, silver nanowire network is a promising alternative to indium tin oxide thin films owing to its lower processing cost and greater suitability for flexible device application. In order to widen the application of silver nanowire network, the electrical conductance has to be improved while maintaining high optical transparency. In this study, we report the enhancement of the electrical conductance of silver nanowire network transparent electrodes by copper electrodeposition on the silver nanowire networks. The electrodeposited copper lowered the sheet resistance of the silver nanowire networks from 21.9 Ω/□ to 12.6 Ω/□. We perform detailed X-ray diffraction analysis revealing the effect of the amount of electrodeposited copper-shell on the sheet resistance of the core-shell(silver/copper) nanowire network transparent electrodes. From the relationship between the cross-sectional area of the copper-shell and the sheet resistance of the transparent electrodes, we deduce the electrical resistivity of electrodeposited copper to be approximately 4.5 times that of copper bulk.
        4,000원
        18.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of Cu2SO4 and H2SO4 at a current density of 10 mA/cm2. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about 80 μm. The contact resistance of the copper electrode is 0.89 mΩ·cm2, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are 1 Ω/□ and 40 Ω/□, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.
        4,000원
        19.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We prepared Y3Al5O12;Ce3+,Pr3+ transparent ceramic phosphor using a solid state reaction method. By XRD pattern analysis and SEM measurement, our phosphors reveal an Ia-3d(230) space group of cubic structure, and the transparent ceramic phosphor has a polycrystal state with some internal cracks and pores. In the Raman scattering measurement with an increasing temperature, lattice vibrations of the transparent ceramic phosphor decrease due to its more perfect crystal structure and symmetry. Thus, low phonon generation is possible at high temperature. Optical properties of the transparent ceramic phosphor have broader excitation spectra due to a large internal reflection. There is a wide emission band from the green to yellow region, and the red color emission between 610 nm and 640 nm is also observed. The red-yellow phosphor optical characteristics enable a high Color Rendering Index (CRI) in combination with blue emitting LED or LD. Due to its good thermal properties of low phonon generation at high temperature and a wide emission range for high CRI characteristics, the transparent ceramic phosphor is shown to be a good candidate for high power solid state white lighting.
        4,000원
        20.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Liquid crystals offer plenty of useful activities as improving the stability of emulsion, increasing moisturizing power, drug release, improving skin feeling and visual effect for cosmetics fields. In order to prepare stable semi-transparent gel emulsion, liquid crystal emulsification method was used. The emulsion stabilities of systems containing glycerin, fatty alcohols, surfactants, water and oil were investigated at various temperatures as time passed. The stabilities of all emulsions were evaluated by means of a polarizing microscope, SEM, rheometer, colorimeter and DSC. Even though the samples stored at 50℃ thermostatic chamber were occurred the reduction of hardness, turbidity and △H and the peak shift, the semi-transparent gel emulsion was very stable without separation between water and oils phase in emulsion
        4,000원
        1 2 3 4 5