검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 37

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of flow analysis is to develop a simple CFD analysis model to develop a heat transfer analysis model including transient heat transfer characteristics, especially phase change, of thin film evaporators. The simple analytical model focuses on the evaporation phase change. To reduce the computational cost, the shape was simplified to two dimensions, and the simulation time was set short with a focus on simulating the phase change phenomenon. In the future, based on this analysis model, we will develop an analysis model for simulating not only vaporization but also liquefaction, that is, transient distillation phenomenon, according to the shape of the thin film distillation device.
        4,000원
        2.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, 3D design, vibration analysis and experiment, and feed rate performance test were performed to develop a vibratory bowl feeder for supplying ultra-thin plate parts of less than 50 microns. The natural frequency and resonant frequency of the vibratory bowl feeder were obtained through the vibration analysis and experiment, and it was confirmed that the results of the analysis and experiment agree well. Through the feed rate experiment, it was confirmed that up to 610 ultra-thin parts per minute were fed at 250Hz and a supply voltage of 220V, where the excitation frequency and the resonant frequency match. And through analysis and experimental research, it was confirmed that the development of a vibratory bowl feeder for supplying ultra-thin parts was successful.
        4,000원
        3.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to verify the effectiveness of the developed ultra-thin-continuously reinforced concrete partition (UT-CRCP) overlay method through a comparative analysis of the early-behavior of the UT-CRCP with a 100 mm cutting overlay of the existing JPCP. METHODS : This study aims to minimize the vulnerability of the existing JPCP (joint section behavior) by overlaying the continuous reinforcement form to constrain joint behavior. For this purpose, the early-behavior of the JPCP section was measured and the early-behavior of the UT-CRCP section was compared with that of the cutting overlay of the same section. The testbed was constructed for comparative analysis of the two types of pavements and the early behavior was measured using the pure environmental loads, i.e., situations where there was no traffic load. For the UT-CRCP, which is a comparative test group, UT-CRCP was constructed approximately one year after the JPCP was constructed by milling the top of the existing JPCP by 100 mm. RESULTS : 1) UT-CRCP was shown to effectively reduce the amount of crack width change on the surface by 17 %, compared to JPCP, by placing reinforcement inside the pavement. 2) The restricting effect of the UT-CRCP was analyzed by comparing the strain generated by the cross-section depth for the two pavement types. As a result, the restricting rate by depth (20, 80, 120, and 280 mm) was 68.4 %, 80.2 %, 89.2 %, and 26.7 %, respectively. 3) We reviewed the comprehensive gauge restricting rate at depths of 80 mm and 120 mm (80.2 % and 89.2 %, respectively) and the absolute value of behavior that is located at the ±20 mm of the interface of JPCP and UT-CRCP. Thus, it was possible to estimate that both layers of pavements exhibit the same behavior (tied) at the interface between the two pavement layers. CONCLUSIONS : In this study, the early behavior of the BCO concept UT-CRCP overlay technique was analyzed and quantitatively presented to overcome the limitations of JPCP with relatively weak point behavior and to increase the commonality of aged concrete pavement to the performance of the new pavement.
        4,000원
        4.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper aims to experimentally and numerically explore fracture mechanism characteristics of ultra-thin chopped carbon fiber tape-reinforced thermoplastics (UT-CTT) hat-shaped hollow beam under transverse static and impact loadings. Three distinct failure modes were observed in the impact bending tests, whereas only one similar progressive collapse mode was observed in the transverse bending tests. The numerical model was to incorporate some hypothetical inter-layers in UT-CTT and assign them with the failure model as cohesive zone model, which can perform non-linear characteristics with failure criterion for representing delamination failure. The dynamic material parameters for the impact model were theoretically predicted with consideration of strain-rate dependency. It shows that the proposed modeling approach for interacting damage modes can serve as a benchmark for modeling damage coupling in composite materials.
        4,000원
        5.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to evaluate the performance of an ultra-thin asphalt pavement as a preventive maintenance approach through laboratory tests. METHODS : An ultra-thin asphalt pavement of 2 cm wearing course thickness comprising modified asphalt and aggregate is a preventive maintenance method used for asphalt pavements. A mix design was carried out to determine the optimum aggregate gradation and asphalt contents. A dynamic immersion test was performed to evaluate the water-resistance of the ultra-thin asphalt pavement. A wet track abrasion test and a cohesion test were conducted to examine the applicability of the ultra-thin asphalt pavement in surface treatment. The performance of the ultra-thin asphalt pavement was evaluated through wheel loading tests, such as Hamburg wheel-tracking and third-scale model mobileloading simulator (MMLS-3). RESULTS : An optimum binder content of 4.9% was obtained in the ultra-thin asphalt mixture from the Marshall mix design. The waterresistance tests indicated a 70% dynamic immersion coverage rate of the ultra-thin asphalt pavement. The wet track abrasion test showed an abrasion rate of 0.0107 g/cm2, and the cohesion tests indicated a 19.0 kg·cm average cohesion at 30 min of operating time and 21.4 kg·cm average cohesion at 60 min of operating time. From the Hamburg wheel-tracking test, a 16.56 mm rut depth at 20,000 wheel passing was obtained. Finally, a 5.87 mm rut depth at 300,000 number of wheel passing was detected from the MMLS-3 test. CONCLUSIONS : The water-resistance of the ultra-thin asphalt pavement satisfied the recommended guidelines of the Korean Ministry of Land, Infrastructure and Transport. In addition, the applicability of the ultra-thin asphalt pavement as a surface treatment met the standard of the International Slurry Surfacing Association. Furthermore, the deformation performance of the ultra-thin asphalt pavement was 1.5 times better than that of the straight asphalt pavement, based on the results of the wheel-loading tests. Hence, it is estimated that an ultra-thin asphalt pavement has a high performance in the preventive maintenance of asphalt pavement, even though the cracking resistance was not evaluated in this study.
        4,000원
        6.
        2019.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we prepare pure WO3 inverse opal(IO) film with a thickness of approximately 3 μm by electrodeposition, and an ultra-thin TiO2 layer having a thickness of 2 nm is deposited on WO3 IO film by atomic layer deposition. Both sets of photoelectrochemical properties are evaluated after developing dye-sensitized solar cells(DSSCs). In addition, morphological, crystalline and optical properties of the developed films are evaluated through field-emission scanning electron microscopy(FE-SEM), High-resolution transmission electron microscopy(HR-TEM), X-ray diffraction(XRD) and UV/ visible/infrared spectrophotometry. In particular, pure WO3 IO based DSSCs show low VOC, JSC and fill factor of 0.25 V, 0.89 mA/cm2 and 18.9 %, achieving an efficiency of 0.04 %, whereas the TiO2/WO3 IO based DSSCs exhibit VOC, JSC and fill factor of 0.57 V, 1.18 mA/cm2 and 50.1 %, revealing an overall conversion efficiency of 0.34 %, probably attributable to the high dye adsorption and suppressed charge recombination reaction.
        4,000원
        7.
        2018.05 구독 인증기관·개인회원 무료
        In recent years, there have been applied methods for minimizing noise by adjusting the method of installing soundproof walls, soundproof tunnels, soundproofing rims, environmental facilities, etc., and the shape of the surface texture of tire treads and packaging materials for the purpose of reducing road noise. Low noise pavement methods such as rubber asphalt (CRM), open graded asphalt concrete (OGAC), permeable Friction Courses (PFC), open graded friction courses (OGFC) and porous asphalt have been applied to reduce road noise. Especially, porous pavement is the most widely used low noise pavement with porous structure, which can reduce noise and drain water through continuous void of pavement. On the other hand, porous asphalt pavement has problems such as reduction of noise reduction effect and difficulty of road surface management due to void closing and increase of construction cost. The purpose of this study is to develop ultra-thin layer hot mix asphalt pavement method which maximizes road noise reduction effect by surface micro voids (Recover asphalt pavement) to improve void clogging of present porous pavement method. For this study, maximum size 5mm aggregate and cationic-treated fiber reinforced asphalt modifier (CSM) were used. The Marshall design method was applied grain-size distribution curve was based on SMA mix design. Marshall test, TSR, MMLS3 test and Hamburg test were carried out to evaluate the mechanical properties of ultra -thin layered asphalt pavement method with surface micro voids. Also, the effect of road noise reduction was evaluated through field application in urban area.
        8.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        스테아르산과 인지질혼합물의 농도변화에 띠르는 유기초박막에 대한 안정성을 조사하였다. 스 테아르산과 인지질 혼합물 유기초박막은 ITO glass에 LB법을 사용하여 제막하였다. 전기화학적 특성은 NaClO4 용액에서 3 전극 시스템으로 순환전압전류법을 사용하여 초기 1650 mV에서 최종 퍼텐셜 -1350 mV 까지 측정하였다. 그 결과 스테아르산과 인지질의 혼합물 유기초막은 순환전압전류도표로부 터 산화전류로 인한 비가역공정으로 나타났다. 스테아르산과 인지질혼합물 LB막(몰비 1:1, 1:2, 1:3)에 서 확산계수(D)는 0.01 N NaClO4에서 각각 1.4x10-3, 1.7x10-3 및 1.6x10-3 (cm2/s)로 산출되었다.
        4,000원
        9.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        UHPC(Ultra High Performance Concrete) is used widely with its remarkable performance, such as strength, ductility and durability. Since the fibers in the UHPC can control the tensile crack, the punching shear capacity of UHPC is higher than that of the conventional concrete. In this paper, seven slabs with different thickness and fiber volume ratio were tested. The ultimate punching shear strength was increased with the fiber volume ratio up to 1%. The shear capacity of specimens with the fiber content 1% and 1.5% do not have big differences. The thicker slab has higher punching shear strength and lower deformation capacity. The critical sections of punching shear failure were similar regardless of the fiber volume ratio, but it were larger in thicker slab.
        4,000원
        10.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultra thin sheet for electromagnetic interference(EMI) shielding purpose has been designed using base metal, PET & DST sheet stacking technology. Also, an automatic manufacturing system is developed. This ultra thin EMI shielding sheet is an effective shield against low frequency(~300kHz) EMI that can not shield completely by the existing EMI shielding sheet. And the developed automatic manufacturing system can stack ultra thin shielding sheet without any wrinkles.
        4,000원
        11.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultra-thin liquid films on solid substrates in contact with the saturated vapor are studied by using molecular dynamics simulation. The properties of evaporation and condensation of the films of various adsorptive strengths and thicknesses are obtained during the quasi-steady film evolution. Net condensations occur when the ultra-thin films on the high energy surface come into contact with the saturated vapor phase because the normal film pressure stays lower than the saturated vapor pressure. The net condensation rate is higher for the material combination of higher adsorptive strength. It becomes more so when the film thickness is of a lesser size. On the other hand, that of lower adsorptive strength has lower net condensation rate and depends less on the film thickness. Therefore, the size effect of the condensation phenomenon is more significant for the system of a higher adsorptive strength. This properties come from the state of ultra-thin film, which can be quantified by using disjoining pressure in the quasi-steady processes. These results have implications in practical problems concerning the moving contact line when the precursor film formation is critica
        4,000원
        12.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to evaluate the mechanical characteristics of castor oil based bio-polymer concrete for use of ultra thin overlays. METHODS : To evaluate the mechanical properties of bio-polymer concrete, the various laboratory tests including compressive, tensile, and flexural strength, and elongation tests were conducted on bio-polymer concrete specimens in this study. The mechanical characteristics of bio-polymer concretes were examined by changing the content of hardener and polymer binder to determine the optimum content for ultra-thin overlays. The bio-polymer concrete developed in this study was used for field trial test of the ultra-thin bridge deck pavement for verifying the workability and monitoring the long-term performance of materials. RESULTS : Test results showed that tensile and the flexural strength of bio-polymer concretes increase and the elongation of bio-polymer concrete decreases with increase of binder content. A field adhesive strength tests conducted on bridge deck pavement indicates the bio-polymer concrete has more than 2MPa of adhesive strength satisfy with the design criteria. CONCLUSIONS : The bio-polymer concrete with more than 20% content of castor oil was developed for ultra-thin overlays in this study. It is found from this study that the 35% of hardener content is most appropriate for maintaining the strength characteristics and flexibility.
        4,000원
        13.
        2011.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ultra-thin aluminum (Al) and tin (Sn) films were grown by dc magnetron sputtering on a glass substrate. The electrical resistance R of films was measured in-situ method during the film growth. Also transmission electron microscopy (TEM) study was carried out to observe the microstructure of the films. In the ultra-thin film study, an exact determination of a coalescence thickness and a continuous film thickness is very important. Therefore, we tried to measure the minimum thickness for continuous film (dmin) by means of a graphical method using a number of different y-values as a function of film thickness. The raw date obtained in this study provides a graph of in-situ resistance of metal film as a function of film thickness. For the Al film, there occurs a maximum value in a graph of in-situ electrical resistance versus film thickness. Using the results in this study, we could define clearly the minimum thickness for continuous film where the position of minimum values in the graph when we put the value of Rd3 to y-axis and the film thickness to x-axis. The measured values for the minimum thickness for continuous film are 21 nm and 16 nm for sputtered Al and Sn films, respectively. The new method for defining the minimum thickness for continuous film in this study can be utilized in a basic data when we design an ultra-thin film for the metallization application in nano-scale devices.
        4,000원
        14.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 콘크리트 슬래브 및 포장도로에 덧씌우기 포장으로 개발된 아크릴 폴리머 콘크리트의 물리 역학적 특성을 평가하기 위하여 수행되었다. 점도시험, 흐름시험, 압축강도시험, 휨 강도시험, 인장강도시험, 선 수축시험, 열팽창계수시험 및 온도변화에 대한 부착성 등 다양한 실내 시험을 실시하였다. 본 연구에서 개발된 아크릴 폴리머 콘크리트의 실내시험 결과 ACI에서 제시하는 모든 기준을 만족하는 것으로 평가되었다. 아크릴 폴리머 콘크리트의 공용성을 평가하기 위해 추가적으로 포장가속시험(APT)을 수행하였으나 등가 단축하중을 15,909,939회를 적용하는 동안 심각한 파손을 확인할 수 없었다. 마지막으로 현장 적용성을 평가하기 위하여 열화현상이 진행된 콘크리트 도로에 10mm의 폴리머 콘크리트 덧씌우기를 적용하였다. 현장 적용 후 미끄럼 저항성, 소음 및 평탄성을 측정한 결과 미끄럼 저항성 및 소음도는 상당히 개선되었으나 평탄성 측정치는 다소 증가하였다. 추후 현장에 적용된 아크릴 폴리머 콘크리트의 정기적인 조사를 통하여 장기 공용성 평가를 수행할 예정이다.
        4,000원
        15.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Behaviors of saturated fatty acid halides (CI4, C16, C18) were measured by LB method when the molecules were stimulated by pressure. The saturated fatty acid halides were deposited on the indium tin oxide(lTO) glass by the LB method. The average organic ultra thin film size and the surface roughness of the fatty acid halides thin films were investigated using AFM. It was found that AFM images show small surface roughness (2.5~5.0 nm) and the organic ultra thin film size of 2.5~12 nm. Both aggregations and pin-holes were also seen on the AFM images. However we found that the surface roughness. These effects seem to be reasonable to be related to the increase of the organic ultra thin film size of fatty acid halides.
        4,000원
        17.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyimide is a well-known organic dielectric material, which has not only high chemical and thermal stability but also good electrical insulating and mechanical properties. In this research, the electric conduction mechanism of PI Ultra-Thin Films was investigated at room temperature. At low electric field, ohmic conduction (I∝V) was observed and the calculated electrical conductivity was about 4.23×10-15~9.81×10-15 S/cm. At high electric field, nonohmic conduction (I∝V2) was observed and the conduction mechanism was explained by space charge limited region effect. The dielectric constant of PI Ultra-Thin Films was about 7.0.
        4,000원
        18.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the electrochemical properties for Langmuir-Blodgett (LB) films mixed with fatty acid (8A5H) and phospholipid (DLPE, DMPC, and DPPA). LB films of 8A5H monolayer and 8A5H-phospholipid mixture were deposited using the Langmuir-Blodgett method on the indium tin oxide(ITO) glass. The electrochemical properties measured using cyclic voltammetry with three-electrode system, an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode at various concentrations(0.1, 0.5, and 1.0 mol/L) of NaClO4 solution. A measuring range was reduced from initial potential to -1350 mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate was 50, 100, 150 and 200 mV/s, respectively. As a result, LB films of fatty acid and phospholipid (8A5H/DLPE and DPPA) appeared irreversible process were caused by only the reduction current from the cyclic voltammogram and LB film of 8A5H-DMPC mixture was found to be caused by a reversible oxidation-reduction process.
        4,000원
        20.
        2004.03 구독 인증기관 무료, 개인회원 유료
        국내 고속국도 및 일반국도의 약40%, 98%가 아스팔트 포장으로 구성되어 있으며 아스팔트 포장의 주요 파손 형태는 러팅(rutting) 및 균열이다. 파손이 심한 아스팔트 포장에 공용성이 좋은 것으로 알려져 있는 UTW(Ultra-Thin Whitetopping, 이하 중 신 콘)가 국내 도로의 유지보수 공법으로 적용될 수 있는가를 판단하였다. 본 논문은 경기도 폐도에 시험 시공된 중 신 콘 포장에서의 정적하중재하실험을 통하여 교통하중 및 환경하중 조건에 따른 중 신 콘의 거동 분석 결과이다. 콘크리트 두께를 50, 100, 150mm로 하여 두께에 따른 거동을 분석한 결과, 콘크리트 두께가 50mm일 때 콘크리트 하부에서 발생하는 인장 변형률이 급격하게 증가한다는 것을 알 수 있었다. 또한 계절별 실험을 통해 포장 온도가 중 신 콘 거동에 미치는 영향이 큰 것을 알 수 있었다. 하중재하위치에 따른 거동분석 결과에서는 슬래브 중앙부와 줄눈부에서 약 25cm 떨어진 지점부터 하중이 재하될 때 중앙부와 줄눈부에 영향을 미치기 시작하였고 이 때, 최대 인장 변형률의 75%까지 변형률이 발생함에 따라 줄눈간격 결정에 주의를 요해야 할 것으로 판단되었다.
        4,300원
        1 2