In this study, high temperature wetting analysis and AZ80/Ti interfacial structure observation are performed for the mixture of AZ80 and Ti, and the effect of Al on wetting in Mg alloy is examined. Both molten AZ80 and pure Mg have excellent wettability because the wet angle between molten droplets and the Ti substrate is about 10° from initial contact. Wetting angle decreases with time, and wetting phenomenon continues between droplets and substrate; the change in wetting angle does not show a significant difference when comparing AZ80-Ti and Mg-Ti. As a result of XRD of the lower surface of the AZ80-Ti sample, in addition to the Ti peak of the substrate, the peak of TiAl3, which is a Ti-Al intermetallic compound, is confirmed, and TiAl3 is generated in the Al enrichment region of the Ti substrate surface. EDS analysis is performed on the droplet tip portion of the sample section in which pure Mg droplets are dropped on the Ti substrate. Concentration of oxygen by the natural oxide film is not confirmed on the Ti surface, but oxygen is distributed at the tip of the droplet on the Mg side. Molten AZ80 and Ti-based compound phases are produced by thickening of Al in the vicinity of Ti after wetting is completed, and Al in the Mg alloy does not affect the wetting. The driving force of wetting progression is a thermite reaction that occurs between Mg and TiO2, and then Al in AZ80 thickens on the Ti substrate interface to form an intermetallic compound.
PURPOSES : In this study, the wetting band depths of road slopes estimated using numerical analyses and one-dimensional empirical equations were evaluated.
METHODS : The one-dimensional empirical equations used in this study to estimate the wetting band depth were the Pradel and Raad equation, based on modifying the Green and Ampt equation, Lumb's equation, and Sun equation. The numerical analysis of a finite load slope model was carried out using the Seep/w program (2D). In particular, the effect of the initial suction, which indicated the effect of the antecedent rainfall based on the soil–water characteristic curve, was examined as one condition. The results of the wetting band depths obtained using the empirical equations were evaluated and compared with those of the numerical analysis.
RESULTS : The wetting band depths obtained using one-dimensional empirical equations were greater than those from the analytical results. In the case of empirical equations, the estimated results obtained for the wetting band depth might be misleading because it has the limitation of being expressed using a one-dimensional equation with an error, owing to several assumptions for the water infiltration phenomenon. It was also found that the accuracy of the wetting band depth was closely related to the results of the soil–water characteristic curve.
CONCLUSIONS : Because the wetting band depths obtained using the empirical equation may lead to overestimation, the slope stability could be evaluated as low; however, there was an advantage in terms of inducing conservative design of the road slope. In addition, it was confirmed that the estimated value of the wetting band depth obtained using the Pradel and Raad equation varied with the suction and volumetric function ratios, and further attention should be paid to these two variables.
막증발 (Membrane Distillation, MD) 기술은 역삼투 해수담수화 공정에서 발생하는 농축수의 처리 문제를 해결하고 공정 회수율을 증가시킬 수 있는 차세대 담수화 기술로 부각되고 있다. 하지만 MD 공정의 효율적 운영을 위해서는, 막의 오염 (Fouling) 및 젖음 (Wetting) 현상을 해결하여야 한다. 이 현상들은, 해수 속에 존재하는 성분, 막의 종류 등을 포함한 여러 가지 운영 조건 등에 따라 다를 수 있다. 따라서 본 연구에서는 막오염과 막젖음 현상이 어떻게 발생하는지 살펴보기 위해, MD 공정 운영 조건을 변화시키며 막투수도 및 여과저항, 처리수 전도도 등을 측정하고, SEM-EDX, LEP (Liquid Entry Pressure) 등을 이용하여 막을 분석하였다.
본 연구에서는 막증류법에서 문제가 되는 젖음 현상을 방지하기 위해 분리막의 표면을 초소수성으로 개질하고, 젖음 현상의 가속화를 통해 초소수성 표면의 젖음 방지의 평가에 관한 연구를 진행하였다. 분리막의 표면을 물리적 처리를 통해 기공을 키우고, 산화 처리를 통해 하이드록실기를 형성시켜 성장을 준비한다. 성장을 통해 표면에서부터 형성된 나노 입자를 통해 코팅 방법이 가지는 분리막과 나노 입자 사이의 불안정성을 해결하였고, 성장한 나노 입자의 화학적 개질을 통해 초소수성 막을 준비하였다. 준비된 분리막은 막 증류법의 운전 도중 계면활성제를 첨가함으로써 젖음 현상의 가속화를 통해 개질 전후의 방지효과를 비교하였고, sonication 처리를 통해 나노 입자와 분리막 사이의 안정성을 확인하였다.
본 연구에서는 막증류법에서 문제가 되는 젖음 현상을 방지하기 위한 방법으로서, 멤브레인 표면의 화학적 결합을 통해 멤브레인의 소수성을 향상시키고 그에 따른 영향을 확인하고자 한다. 중공사 표면에 pentafluorostyrene을 라디칼합성 방법을 통해 개질하여 소수성을 증가시켰다. 합성 시간에 따른 영향을 확인하기 위하여 15, 20, 25시간 동안 합성하여 개질 하였고, 막의 접촉각과 liquid entry pressure (LEP)를 통해 소수성 증가를 확인하였다. 이후 vacuum membrane distillation (VMD)을 통해 실제 운전에서 앞선 합성이 막의 성능에 미치는 영향을 확인하였다.
Membrane distillation (MD) is a novel separation process that have drawn attention as an affordable alternative to conventional desalination processes. However, membrane fouling and pore wetting are issues to be addressed prior to widespread application of MD. In this study, the influence of ultrasonic irradiation on fouling and wetting of MD membranes was investigated for better understanding of the MD process. Experiments were carried out using a direct contact membrane distillation apparatus Colloidal silica was used as a model foulants in a synthetic seawater (35,000 mg/L NaCl solution). A vibrator was directed attached to membrane module to generate ultrasonic waves from 25 kHz (the highest energy) to 75 kHz (the lowest energy). Flux and TDS for the distillate water were continuously monitored. Results suggested that ultrasonic irradiation is effective to retard flux decline due to fouling only in the early stage of the MD operation. Moreover, wetting occurred by a long-term application of ultrasonic rradiation at 75 kHz. These results suggest that the conditions for ultrasonic irradiation should be carefully optimized to maximize fouling control and minimize pore wetting.
There have been many studies on superwetting surfaces, ranging from superhydrophilicity to superhydrophobicity, owing to the variety of their potential applications. There are some drawbacks to developing these films for certain applications, such as the fragility of the microscopic roughness feature that is vital to ensure superwettability. At the first part of in this presentation, we fabricated intrinsically stable superwetting films using the organosilicate based layer-by-layer (LbL) self-assembly method in order to control hierarchical roughness and adjusted the surface chemistry of the multilayer structures. At the second part, hydrophilic branched poly(ethylenimine) and nanoparticle were assembled into LbL multilayers in the presence of UV-curable poly(urethane acrylate).
Generally, in the previous researches, it is found that a water droplet is respectively in Wenzel and Cassie-Baxter states on hydrophilic/hydrophobic rough surfaces. And Wenzel and Cassie-Baxter equations are used to estimate the apparent contact angle on the surfaces. However, difference between measured apparent contact angle and estimated apparent contact angle with the equations is recently reported and new model to estimate apparent contact angle on rough surfaces is proposed. In this study, wetting state and apparent contact angle on the surfaces with micro-pillars should be investigated to find solution of this argument. Using the high resolution microscope, the wetting state of the D.I.water droplet on the surface with micro-pillars was visualized and apparent contact angle of the D.I.water droplet was measured. On the basis of experimental data, the equations to estimate apparent contact angle were verificated and the general wetting characteristics on the surfaces with micro-pillars are finally classified.
Ultra-thin liquid films on solid substrates in contact with the saturated vapor are studied by using molecular dynamics simulation. The properties of evaporation and condensation of the films of various adsorptive strengths and thicknesses are obtained during the quasi-steady film evolution. Net condensations occur when the ultra-thin films on the high energy surface come into contact with the saturated vapor phase because the normal film pressure stays lower than the saturated vapor pressure. The net condensation rate is higher for the material combination of higher adsorptive strength. It becomes more so when the film thickness is of a lesser size. On the other hand, that of lower adsorptive strength has lower net condensation rate and depends less on the film thickness. Therefore, the size effect of the condensation phenomenon is more significant for the system of a higher adsorptive strength. This properties come from the state of ultra-thin film, which can be quantified by using disjoining pressure in the quasi-steady processes. These results have implications in practical problems concerning the moving contact line when the precursor film formation is critica
본 연구에서는 정밀관수를 위한 관수시간, 점적라인 설치 등 관수시스템 설계를 위한 기초 데이터를 얻고자 점적관수 시 토성에 따른 물의 수분함량변화를 공간적, 시간적 변이의 차이를 구명하였다. 20cm의 간격의 노즐로 설치된 1열 점적관을 이용 관수 하였을 경우 양토와 사양토내의 수분은 중심을 따라 대칭 형태를 유지하면서 이동하였으나 수분확산 폭은 양토가 더 넓고 속도가 느린 경향을 나타내었다. 상대적으로 높은 모래성분 함량을 갖는 양질사토의 경우는 낮은 수분 보유력으로 인하여 위치별 수분함량의 변화는 상대적으로 낮았으며 그만큼 물 빠짐정도가 큰 것으로 나타났다. 관수개시점과 종말점을 고려하였을 때 사양토의 경우 20cm 깊이에서 관수개시 30분 후에 수분의 포화가 이루어졌으나 양토와 양질사토의 경우는 약 80분이 소요되어 효율적인 수분공급 측면에서 관수시간은 토성별로 달리해야 하는 것으로 나타났다. 깊이 10cm에서의 시간에 다른 토양수분의 감쇠특성은 지수함수의 형태를 나타내었으며 토양별 안정된 상태에서의 수분함량은 양토, 사양토, 양질사토 각각 17.6%, 6.2%, 4.2%로 예측되어 토성에 따라 잔여수분함량은 차이가 있음을 확인하였다. 토양수분함량과 토양수분퍼텐셜과의 관계를 나타내는 수분특성곡선은 시험 토양의 경우 모두 높은 결정계수를 갖는 지수함수로 근사가 가능하여 수분퍼텐셜을 이용하여 측정하는 재배시스템에서 대응하는 수분함량 예측에 유용한 관계식을 얻었다.
The use of dolomite refractories has increased during the past several years in the manufacturing of clean steel during the stainless steelmaking process. However, at the same time, the use of dolomite refractories has led to what is known as the skull formation. In the present work, to understand the skull formation, the wetting characteristics of dolomite substrates by liquid Fe-19wt%Cr-10wt%Ni alloys in various oxygen partial pressures were initially investigated at 1753K using the sessile drop technique. For comparison, the wetting characteristics of alumina substrates were investigated with the same technique. It was found that the wetting index, (1+cosθ), of dolomite is approximately 40% higher compared to those of alumina. In addition, the oxygen partial pressure to generate the surface oxide, which may capture the liquid metal on the refractory surface, for dolomite is much lower than that for alumina. From this study, it was concluded that the use of dolomite is much more closely associated with the skull formation compared to the use of alumina due to the stronger wettability and the surface oxide formation at a lower oxygen partial pressure of dolomite.
The wetting behavior of molten Fe on α-Al2O3 single crystals with three different crystallographic orientations, R(01ar12), A(11ar20), and C(0001), was investigated using the sessile drop method under a 10%H2-Ar atmosphere at 1873 K. It was found that the differences in the contact angle of the three differently oriented α-Al2O3 single crystals were not significant (within 5˚, which corresponded to the changes in the work of adhesion of 157mJ/m2) due to the surface reconstruction.
SiC 보강재 표면에 도금된 Cu금속층이 Al/SiC복합재료의 젖음성에 미치는 영향을 검토하였다. 보강재에 대한 금속층의 도금은 무전해도금법을 이용하였으며, Al/SiC 복합재료의 제조는 텅스텐 발열체 진공로의 670˚C~900˚C에서 제조하여 보강재와 기지간의 접촉부위를 촬영하여 젖음성을 측정하였다 젖음성 측정 결과 보강재에 도금된 Cu층은 젖음성을 향상시켰고, 젖음성의 개선은 보강재에 도금된 금속층과 기지간의 반응에 의해 계면에너지를 변화시킴으로서 나타난 결과이며. 반응을 통한 산화피막의 배제도 영향을 미친 것으로 판단된다