검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 123

        1.
        2024.03 구독 인증기관·개인회원 무료
        택코트란 아스팔트 포장 공사 시 기존 아스팔트층과 신설 아스팔트 층 사이에 부착성을 증가시키기 위하여 사용되는 재료이다. 교통 하중으로 인해 포장 경계면에서 수평전단응력 및 수직인장응력이 발생하게 되는데 택코트의 유실, 양생 부족 등의 문제로 접착 성능 이 부족하면 포장층의 분리, 밀림과 같은 도로 파괴가 형상이 나타날 수 있다. 현재 국내에서는 국토교통부 아스팔트 콘크리트 포장 시공 지침에 택코트 살포량에 대한 기준은 존재하지만 기존 및 신설 아스팔트 포장층 사이에 택코트의 접착강도에 대한 기준은 존재 하지 않는 실정이다, 이는 접착강도 특성이 분석되지 않은 택코트를 사용함에 따라 아스팔트 포장의 공용성 측면에서 문제를 초래할 수 있다. 따라서 본 연구에서는 PG등급이 다른 택코트 4종류에 대한 인장 및 전단접착강도를 확인하기 위하여 인장접착강도 시험, 전 단접착강도 시험을 진행하였다. 택코트의 양생정도에 따른 접착강도 특성을 확인해보기 위하여 택코트의 수분이 증발됨에 따라 중량 변화가 없는 상태를 양생 100%로 하여 양생 0%, 50%, 100%로 진행하였으며, 살포량은 국토교통부 아스팔트 콘크리트 시공 지침에 따 라 0.5ℓ/m2로 진행하였다. 사용된 택코트 종류에 관계 없이 양생 정도가 증가함에 따라 접착강도는 증가하는 추세를 보였으며, 인장 및 전단접착강도 시험에 관계없이 초기 양생(양생 0%~50%)보다 양생 50% 이후에서의 더 높게 강도가 발현된 것을 확인하였다. 또한 PG등급이 높은 택코트가 인장 및 전단접착강도에 관계없이 접착강도 성능이 우수한 것을 확인할 수 있었다. 추후 택코트의 종류를 추 가하여 PG등급이 분류가 이루어진 후에 접착강도 시험을 진행하여 결과를 확인할 예정이다.
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, energy-consuming processes in asphalt plants were evaluated, and the drying and mixing processes were characterized using a thermal equilibrium equation-based model to quantitatively estimate the amount of energy consumed during the production of mixtures in asphalt concrete plants. METHODS : An energy consumption model based on the thermal equilibrium equation was used to estimate the energy consumption of the aggregate drying process that consumes the maximum energy; the energy consumed for material transportation, storage, and operation of other facilities was cited from the literature. The results were compared with the actual results obtained for recycled hot asphalt mixtures and recycled warm mix asphalt mixtures, and a sensitivity analysis was performed by varying the conditions. RESULTS : An analysis of the main processes required to produce asphalt mixtures showed that the water content had the largest impact on energy consumption (approximately 80%). This quantitatively supports the opinion of field practitioners that maximum energy is consumed during aggregate drying. Although some discrepancies were observed, the results were found to be reasonable and within the range of typical measurements. CONCLUSIONS : The thermal energy consumption estimation model provides consistent results that reflect the characteristics of the mixture and can be used to derive the thermal energy consumption rates for individual materials, such as aggregates and binders. This can be used to identify the priorities for process optimization within a plant.
        4,000원
        4.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study was conducted to compare and evaluate the compaction performance and physical properties of recycled asphalt mixtures by utilizing the characteristics of hot-mix asphalt mixtures and foamed asphalt. METHODS : A wearing-course mixture was used for performance evaluations. Subsequently, dynamic shear rheometry (DSR), compaction performance, general physical properties, tensile strength ratio, and Hamburg wheel tracking were tested. RESULTS : As a result of performance comparisons, compaction, and general physical properties satisfied the quality standards. In the Hamburg wheel tracking test, the mixture with the antistripping agent improved performance by approximately 40% compared with the general mixture. As the foamed asphalt binder was produced at a relatively low temperature compared with the general hot-mix asphalt binder, the penetration, viscosity, and DSR test results of the aged foamed asphalt binder showed that the aging of the asphalt binder was suppressed, and the flexibility increased. Therefore, the resistance to fatigue cracks is expected to be enhanced. CONCLUSIONS : Even though the foamed warm-mix recycled asphalt mixture was produced at a temperature that was 20~30°C lower than the hot-mix asphalt mixture, its physical properties were similar to those of the hot-mix asphalt mixture; its use is expected to reduce the production of fuel and air pollutants.
        4,000원
        9.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study compared the performance evaluation of a hot mix asphalt (HMA) and asphalt mixture of a warm-antistrip agent. METHODS : A mix design applying Korean standards was conducted to evaluate the performance evaluation. Thereafter, the quality standard evaluation of the asphalt mixture produced was conducted, and if all quality standards were satisfied, a performance evaluation was conducted. Types of performance evaluation included the Hamburg wheel tracking test and dynamic modulus test. RESULTS : As a result of the Hamburg wheel tracking test, the asphalt mixture with a warm-antistrip agent obtained a lower sedimentation value at 10000 times and 20000 times. This result is considered to have higher plastic deformation resistance of the asphalt mixture with a Warm-antistrip agent than HMA. The U.S. Department of Transportation stipulates that plastic deformation resistance is excellent if the asphalt mixture does not exceed 20,000 times the precipitate of 20 mm. Therefore, we confirmed that the plastic deformation resistance of the asphalt mixture with a warm-antistrip agent was excellent. Additionally, the master curve was analyzed by synthesizing the results of the dynamic modulus test. When analyzing the low load cycle at the bottom left of the master curve, the dynamic modulus value of the master curve was higher in the asphalt mixture with a warm-antistrip agent than in the HMA. In addition, when analyzing the high load cycle part, the dynamic modulus of the HMA was measured to be higher than that of the asphalt mixture with a warm-antistrip agent. Accordingly, the resistance to fatigue cracking of the asphalt mixture with a warm-antistrip agent was considered superior to that of the HMA. CONCLUSIONS : As a result, we confirmed that the asphalt mixture with a warm-antistrip agent that satisfies the Korean quality standards had better plastic deformation and fatigue resistance for all performance evaluation tests conducted in this study than the HMA. However, since the Hamburg wheel tracking test did not significantly differ in the amount of sedimentation in the performance evaluation tests and the mixture using one additive was compared with HMA, studies on the effects of various additives containing warm-antistrip agents are required.
        4,000원
        10.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Graphene nanoplates, which have recently been in the spotlight in various fields, are a layer of graphite used in pencil leads, with carbon arranged in hexagonal honeycomb shapes. The graphene is 0.2 nanometers thick, and it possesses high physical and chemical stability, high strength, and conductivity. These graphene nanoplates have been studied for application in various devices such as semiconductors and batteries, and in the construction sector, where they are used as additives to improve the durability of cement concrete. The purpose of this study was to investigate the physical, and functional properties of graphene-modified asphalt mixtures. METHODS : In this study, the graphene input content of asphalt mixture samples was determined using an asphalt performance grade (PG) test. Based on the results of the test, their strength, stiffness, thermal properties, and electrical conductivity were evaluated. Indirect tensile strength test and dynamic modulus (DM) test were conducted to evaluate the strength and stiffness, and thermal conductivity tests and electrical conductivity evaluations were conducted for determining the functionality of the graphene-modified asphalt mixtures. The thermal conduction test was used to measure the external temperature change over time by placing a general heated asphalt mixture and graphene-modified asphalt with the same raw material-specific mixing ratio inside the temperature chamber in order to measure the heat conductivity. The electrical conductivity was evaluated using a digital multimeter to measure the resistance of DC voltage and DC current via a 4-probe method. RESULTS : The performance grade (PG) test results showed that, for a dynamic shear rheometer (DSR), both tests met the baseline and that physical changes in the binder did not appear evident with graphene addition. Furthermore, each content met the baseline for the bending beam rheometer (BBR). The increasing ratio of flexural creep stiffness approached the maximum when 7.5% graphene was used. In indirect tensile strength test, an average of thrice the indirect tensile strength for graphene-modified asphalt was 0.92 N/mm2, which was approximately 0.04 N/mm2 higher than the average measured three times that of hot mix asphalt mixture, with the same raw material mixing ratio. In the thermal conduction tests, the temperature and the rate of change of temperature of the graphene-modified asphalt mixture were higher than those of the hot-mix asphalt mixture. Lastly, the results of the electric conductivity test using the 4-probe method showed that the electrical conductivity increased slightly as the graphene content increased, but overall, it showed very low electrical conductivity. CONCLUSIONS : In this study, the potential for enhancing the physical and functional performance of graphene nanoplates applied to asphalt mixtures was demonstrated. However, it is practically difficult to arrange graphene particles continuously within an asphalt mixture, which is believed to have very low electrical conductivity.
        4,000원
        11.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study was to evaluate the newly developed Guss mastic asphalt mixtures, called EQ-mastic asphalt mixtures, which contain melted additives for decreasing cooking time. METHODS : A series of experiments were performed to investigate the effectiveness of the melted additives in EQ-mastic asphalt mixtures. Both the existing Guss mastic asphalt mixture and the EQ-mastic asphalt mixture were produced with the same amounts of asphalt binders, aggregates, and fillers, but the existing Guss mastic asphalt mixture contained 3% Trinidad lake asphalt (TLA). The EQ-mastic asphalt mixture contained 3% of additives, including TLA and polyolefin. The physical material performances of both mastic asphalt mixtures were obtained by conducting the Luer fluidity test, penetration test, dynamic stability test, and low-temperature bending test. The results of the tests for the existing Guss mastic and EQ-mastic asphalt mixtures were compared. RESULTS : The fluidity, penetration, dynamic stability, and low-temperature bending strains of both the existing Guss mastic and EQmastic asphalt mixtures all satisfied the standard values provided in the production and construction guides of the Guss mastic asphalt pavement. CONCLUSIONS : When melted additives containing polyolefin are used in the production of Guss mastic asphalt mixtures, the cooking time decreases, so that the corresponding energy consumption and asphalt fume amount can be reduced. Therefore, an EQ-mastic asphalt mixture is proposed for use as an eco-friendly pavement material.
        4,000원
        12.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to analyze the effect of ions in emulsion asphalt on recycling cold asphalt concrete and suggest the possibility of using anionic and nonionic emulsion asphalt. METHODS : In this study, indirect tensile strength, toughness, tensile strength ratio, and dynamic immersion tests were conducted to determine the effects of cation, anion, and non-ion emulsified asphalt on the cold recycled asphalt mixture. Crack resistance was evaluated through indirect tensile strength and toughness tests and the tensile strength ratio and dynamic immersion test were evaluated through tensile strength ratio and dynamic water immersion test. RESULTS : Indirect tensile strength and toughness measurement results demonstrated that the mixture using anion and non-ion emulsified asphalt tended to be higher than that using cation emulsified asphalt; this is due to the high content of reclaimed asphalt pavement with a cationic or ionic surface, which is related to the use of cation-emulsified asphalt in the mixture and has shown a low strength tendency. The tensile strength ratio measurement demonstrated that the mixture using non-ion emulsified asphalt tended to be approximately 15 % higher than that of the anion mixture. This demonstrated that the chemical additive used in the mixture showed a complete hydration reaction with the distribution to the mixture. The dynamic immersion test indicates that the aggregate film rate of asphalt is highly influenced by the surface electric charge of the new aggregate while the ionicity effect appears to be insignificant, at 75 - 85 %, when circular aggregates are used. CONCLUSIONS : High reclaimed asphalt pavement content in cold recycled asphalt mixture, as well as non-ion and anionic emulsified asphalt, is advantageous, reducing cracking and improving moisture resistance. It is believed that anions and non-ions may be better utilized than applying the existing criteria to the cold temperature recycled asphalt mixture with high reclaimed asphalt pavement content. In addition, if the scope of the emulsified asphalt is expanded, various additives can be used, which will require analysis of materials, such as fertilizers and additives.
        4,000원
        13.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to address various problems, such as an increase in material cost and premature failure (e.g., cracks and potholes) of porous pavements, and to develop multifunctional asphalt and asphalt mixtures to ensure the long-term commonality of porous asphalt pavements. METHODS : A basic quality test of two types of porous asphalt mixtures was performed. One type consisted of the existing porous asphalt mixture, using domestically presented grading, and the other a porous asphalt mixture using high-viscosity modified asphalt with enhanced low-temperature properties, aimed at improving strain resistance and developed by applying the grading suggested by the Federal Highway Administration (FHWA). RESULTS : The cantabros loss rate was 19.62 % for conventional modified asphalt (PG 82-22) and 5.95 % for the developed highviscosity modified asphalt (PG 88-28), indicating that both mixtures passed the criteria. Regarding the drain-down loss rate, mixtures using both types of asphalt were found to pass all quality standards. The average permeability coefficients for each porous asphalt mixture were 0.023 and 0.018 and both types of porous asphalt mixtures satisfied the quality standard of 0.01 cm/s, as given by the Asphalt Concrete Pavement Guidelines of the Ministry of Land, Infrastructure, and Transport. CONCLUSIONS : As a result of the mix design of the two porous asphalt mixtures, the mixture developed in this study was found to be superior to the conventional porous asphalt mixture using conventional porous asphalt grading and modified asphalt.
        4,000원
        14.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study was performed to evaluate the short-term aging (SA) protocols of the normal hot-mix asphalt (HMA) mixture, to explore problems, and to suggest proper procedures based on fundamental principles of SA in terms of the SA temperature (T) and length of time (Lt) in existing specifications in several countries including Korea. METHODS : As the SA in our lab is a simulation of field SA, which is an inevitable procedure occurring naturally in the current field practice, major SA guidelines of foreign countries and Korea were reviewed to investigate problems that showed discrepancies with field practice. The aging quantity (Aq) model was introduced as a function of T and Lt, based on the correlation with absolute viscosity (AV) to estimate Aq by T and Lt. The normal SA (NSA) was suggested through an example procedure inducing binder aging level similar to the RTFOtreated binder AV or Aq. Based on the NSA Aq level, lower, proper, or higher SA conditions were discovered from the existing SA guidelines. RESULTS : As Aq has excellent correlation with AV, the proper T and Lt for NSA as an example was suggested based on the AV of RTFOtreated binder to induce an Aq range of 19,000-25,000 min.℃. It was found that there were several problems in the existing guidelines in USA and Korea. These included lower T, shorter or longer Lt, and air blowing or stirring the mix during SA, which were not matched with the practical condition of loaded HMA mixtures that were short-term aged under hot temperatures in trucks. CONCLUSIONS : It was concluded that there are several problems in the current SA guidelines, which do not provide proper HMA temperature to mixtures for proper (modal) length of time. Therefore, these guidelines should be reevaluated carefully and revised based on the fundamental field SA principle. The NSA condition should be suggested using proper HMA T and modal Lt for better simulation of field SA practice.
        4,200원
        16.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study is to evaluate the physical properties of recycled asphalt mixtures reinforced with glass fiber. METHODS: Firstly, mixing design was conducted on recycled asphalt mixture for use of 50% recycled aggregate. Various laboratory tests were performed on four types of recycled asphalt mixtures with different glass fiber content to evaluate the physical properties. The laboratory tests include indirect tensile strength test, dynamic modulus test, Hamburg wheel tracking test and tensile-strength ratio to evaluate cracks, rutting and moisture resistance of mixtures. RESULTS: The indirect tensile strength of fiber reinforced glass increased about 139.4%. As a result of comparing the master curves obtained by the dynamic modulus test, the elasticity was low in the low temperature region and high in the high temperature region when the glass fiber was reinforced. The glass fiber contents of PEGS 0.3%, Micro PPGF 0.1% and Macro PPGF 0.3% showed the highest moisture resistance and rutting resistance. CONCLUSIONS : The test results show that use of glass fiber reinforcement can increase the resistance to cracking, rutting, and moisture damage of asphalt mixtures. It is also necessary to validate the long-term performance of recycled asphalt mixtures with glass fiber using full scale pavement testing and field trial construction.
        4,000원
        17.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: In order to apply high-speed weigh-in-motion (HS WIM) systems to asphalt pavement, three high-durability asphalt concrete mixtures installed with a WIM epoxy are evaluated. METHODS: In this study, dynamic stability, number of loading repetitions to reach the rut depth of 1 mm, and rut depth measurements of three asphalt mixtures at 60℃ were compared using an Asphalt Pavement Analyzer (APA). Laboratory-fabricated material and field core samples were prepared and tested according to KS F2374. RESULTS : Through the laboratory tests, it was found that all three modified asphalt mixtures (stone-mastic, porous, and semi-rigid) with WIM epoxy showed favorable permanent deformation results and passed the dynamic stability criterion of 3000 loading repetitions per 1 mm. In addition, it was confirmed that the modified SMA mixtures cored from the field construction yields satisfactory rutting testing results using the APA. Finally, the epoxy used for the HS WIM installation shows good adhesion with the three asphalt mixtures and permanent deformation resistance.
        4,000원
        18.
        2018.05 구독 인증기관·개인회원 무료
        The relationship between asphalt mixture and crack resistance is difficult to predict because it is influenced by aggregate particle size, aggregate and asphalt interface characteristics, rheological properties of asphalt type, asphalt coating thickness, temperature sensitivity and porosity. For this reason, various evaluation methods of crack resistance have been developed. In Korea, indirect tensile strength and toughness are used as criteria for crack resistance test of asphalt mixture. DC (T), SCB, Fenix test, and OT (overlay test) have been developed and used internationally as crack resistance test methods. In this study, we compared the conventional crack resistance evaluation methods, and developed a direct tensile fatigue test method which was modified with OT method and Fenix method. Crack resistances were evaluated using reclaimed asphalt pavements (RAP) and virgin asphalt mixtures. As a result, direct tensile fatigue test method was evaluated as suitable for evaluation of crack resistance.
        19.
        2018.05 구독 인증기관·개인회원 무료
        The warm recycling technology has been increasingly used in many countries due to the environmental and financial benefits. In this study, the rheological and fatigue performance evolutions of warm-mix recycled asphalt materials during the secondary service period were evaluated in two scales, mixture and fine aggregate matrix (FAM). A laboratory simulation method was proposed to produce warm-mix recycled asphalt binders with various long-term aging levels for the mixture and FAM tests. The dynamic shear rheometer temperature and frequency sweep test and time sweep test were conducted to characterize the rheological and fatigue behavior of FAMs, respectively. The rheological and fatigue properties of asphalt mixtures were measured by the dynamic modulus test and semi-circular bending test, respectively. Effects of aging levels and recycling plans on different pavement performance were investigated. Performance correlations between the mixture and FAM were finally investigated by the statistical method. It is found that the secondary long-term aging causes the continuous increase in the stiffness and decrease in the viscoelasticity level in each material scale, indicating the improvement of the rutting resistance and the reduction of the fatigue resistance. The warm mix asphalt technology plays a positive role in the fatigue performance with a loss of the rutting resistance. Using the styrene butadiene rubber latex can improve different pavement performance within the whole time-temperature domain. Good performance correlations between the mixture and FAM are developed, indicating that the FAM may be the critical material scale for evaluating the rheological and fatigue performance of warm-mix recycled asphalt pavements.
        20.
        2018.05 구독 인증기관·개인회원 무료
        Recently, there is an increasing the pavement distresses such as rutting with an increase in heavy vehicles on the road in Mongolia. Rutting is the longitudinal depression in the wheel path in asphalt pavements and it causes a hydroplaning and severe safety concern for users. This study aims to develop paving material that can prevent rutting on the road pavement by improving the durability of the asphalt mixture in Mongolia. Therefore, this study was carried out using the technique of reinforcing the material by adding fibers to conventional asphalt mixture. Fibers have been used to reinforce various materials for many decades in various parts of the world. It is generally understood that asphalt is strong in compression and weak in tension. Adding fibers with high tensile strength can help increase the strength of a mixture[1]. A mixture of glass fibers was used in this study to evaluate the performance characteristics. In coordination with the City of Ulaanbaatar, The test section selected in this study was Peace Avenue in Ulaanbaatar. The test section was a bus lane with severe rutting by heavy vehicles. The designated road test section performed cutting and overlay using five asphalt mixtures: Glass Fiber-reinforced Asphalt, Hot Mix Asphalt(10mm, 19mm), Polymer Modify Asphalt(2 types). The performance survey was conducted after the summer. As a result, No noticeable cracks were observed in glass-reinforced mixture section and the rut-depth of the glass-reinforced mixture is lower than other mixtures[2].
        1 2 3 4 5