검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,190

        87.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Owing to their simplicity and ease of synthesis, carbon nanotubes (CNTs) have captivated attention of researchers. Many engineering applications have investigated the new features of nanostructured carbon nanotubes, such as large surface area, stiffness and durability. CNTs have opened up new opportunities for environmental improvement, pollution management and application in a variety of fields. Multiple types of pollution are produced as a result of population growth, urbanization and industrialization. CNTs are used to solve a variety of challenges, including environmental difficulties, water pollution, biomedical applications, and so on. It becomes an unavoidable present and future material. Different applications of CNTs have been presented in this review paper. CNTs are potential material having number of uses, including water purification, drug delivery, preservatives, catalysis, genetic engineering and artificial implants which are reviewed in this review article. This paper is presenting an explicit and systematic progress of CNTs for water treatment, medicinal uses drug delivery, artificial implants and so on, and a multitude of CNT applications in broad disciplines and their purification methods have been covered. The issues related to synthesis technologies, purification technology, bio-medicinal application and catalytic property of CNTs within the framework of different engineering applications and environmental impact are discussed in this study.
        7,800원
        88.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the epidemiological characteristics of the antimicrobial resistant Enterococcus isolates from the four major rivers of Korea in 2012. A total 316 surface water samples were collected from three distinct sites (nearby livestock farms, tributaries, and major rivers) at two different seasons (dry season: n = 76, wet season: n = 240). A total 654 bacterial cells were isolated from samples and their genus distribution were determined. We found that Gram-negative bacteria including various genera were prevalent (n = 522, 79.8%), and Enterococcus was the most common genus of Gram-positive bacteria (n = 119, 18.2%). The isolation rate of Gram-negative bacteria was higher in wet season, whereas that of Enterococcus isolates was higher in dry season. The prevalence of Enterococcus isolates was also higher nearby livestock farms than on tributaries and main rivers. Since Enterococcus isolate is a key indicator for animal fecal contamination, the following experiments focused on this microorganism. As compared to a previous report in 2006, the resistance rates in E. faecium to erythromycin (40.0% to 69.9%) and chloramphenicol (0% to 16.4%) were increased, whereas those to penicillin (56.0% to 4.1%) and teicoplanin (36.0% to 0%) were decreased. We also found that antimicrobial-resistant (AMR) E. faecium isolates from rivers and livestock samples shared similar pulsed-filed gel electrophoresis (PFGE) profiles, validating the transmission of AMR Enterococcus isolates from livestock to river. Taken together, this study provides us with detailed information about bacterial contamination status in four major rivers, and highlights the changes in AMR pattern of Enterococcus isolates, which are expected to have originated from livestock.
        4,000원
        89.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Chicken embryonic stem (ES) cells have great potential and provide a powerful tool to investigate embryonic development and to manipulate genetic modification in a genome. However, very limited studies are available on the functional characterization and robust expansion of chicken ES cells compared to other species. Here, we have developed a method to generate chicken embryonic stem cell-like cells under pluripotent culture conditions. The chicken embryonic stem cell-like cells were cultivated long-term over several passages of culture without loss of pluripotency in vitro and had the specific expression of key stem cell markers. Furthermore, they showed severe changes in morphology and a significant reduction in pluripotent genes after siRNA-mediated NANOG knockdown. Collectively, these results demonstrate the efficient generation of chicken embryonic stem cell-like cells from EGK stage X blastoderm-derived singularized cells and will facilitate their potential use for various purposes, such as biobanking genetic materials and understanding stemness in the fields of animal biotechnology.
        4,000원
        90.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Broad bean wilt virus 2 (BBWV2) is a species in the genus Fabavirus and family Secoviridae, which is transmitted by aphids and has a wide host range. The BBWV2 genome is composed of two single-stranded, positive-sense RNAs, RNA-1 and RNA-2. The representative symptoms of BBWV2 are mosaic, mottle, vein clearing, wilt, and stunting on leaves, and these symptoms cause economic damage to various crops. In 2019, Perilla fructescens leaves with mosaic and yellowing symptoms were found in Geumsan, South Korea. Reverse-transcription polymerase chain reaction (RTPCR) was performed with specific primers for 10 reported viruses, including BBWV2, to identify the causal virus, and the results were positive for BBWV2. To characterize a BBWV2 isolate (BBWV2-GS-PF) from symptomatic P. fructescens, genetic analysis and pathogenicity tests were performed. The complete genomic sequences of RNA-1 and RNA-2 of BBWV2-GS-PF were phylogenetically distant to the previously reported BBWV2 isolates, with relatively low nucleotide sequence similarities of 76-80%. In the pathogenicity test, unlike most BBWV2 isolates with mild mosaic or mosaic symptoms in peppers, the BBWV2-GS-PF isolate showed typical ring spot symptoms. Considering these results, the BBWV2-GS-PF isolate from P. fructescens could be classified as a new strain of BBWV2.
        4,500원
        91.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study focuses on the adsorption of organic matter mainly COD from pretreated landfill leachate of Lamdeng Khunou Solid Waste Management Plant, Manipur, India through the employment of H3PO4 treated activated carbon derived from Parkia speciosa (Petai) pods (PPAC). The adsorbent was analyzed for morphological and surface characterization by various methods including, Field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray Analysis (EDAX), Brunauer–Emmett–Teller (BET) surface area and pH at zero point charges ( pHZPC). The impacts of adsorption processes such as initial pH, temperature, equilibrium time and dose of adsorbent were considered to evaluate the performance of PPAC. At 20 °C, PPAC showed maximum COD removal of 93% within 90 min contact time, at optimum pH 2. Adsorption kinetic was able to explain by Lagergren’s pseudo-second-order equation and intraparticular diffusion models suggesting the combined behavior of both the physical and chemical adsorption of COD on PPAC. Through thermodynamics and isotherm studies, the adsorption of COD on PPAC is revealed to be exothermic with maximum monolayer coverage of 200 mg COD/g PPAC. The performance of the PPAC adsorbent is also compared with other existing reported adsorbents for treating leachate.
        4,900원
        92.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        바이오물질을 포함하는 나노발전기는 무공해 에너지원이며 생분해성 전자폐기물이라는 점에서 친환경적인 전자소자이다. 특히 바이오 물질이 바이오폐기물로부터 추출될 수 있다면 바이오폐기물의 양도 줄어들 것이다. 본 연구에서는 포유동물의 피부에 존재하는 동물성 콜라겐을 이용하여 마찰전기 나노발전 기를 제작하였고 그 특성평가를 진행하였다. 마찰전기 나노발전기의 전기적 양극층은 회전 도포방법을 이 용하여 콜라겐 막을 형성하여 구성하였으며, 주사전자현미경으로 막이 다공성임을 확인하였다. 제작한 마 찰전기 나노발전기는 주기적인 기계적 운동에 의해 3 Hz에서 7 V부터 5 Hz에서 15 V의 개방전압과 5 Hz에서 3.8 μA의 단락전류를 보였다. 결론적으로, 콜라겐 함유 마찰전기 나노발전기는 센서와 같은 저전 력 구동 장치의 전원이 될 수 있으며 전자 폐기물 감소에도 유용할 것으로 기대된다.
        4,000원
        93.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, UiO-66-NH2 was synthesized and incorporated with graphene aerosol (UiO-66-NH2/GA) and ethylenediamine functionalized graphene oxide (UiO-66-NH2/GO-NH2). These composites were characterized using infrared spectroscopy, powder X-ray diffraction, ultraviolet–visible light spectroscopy, scanning electron microscope, and energy-dispersive X-ray spectroscopy. UiO-66-NH2/GO-NH2 exhibited 93% adsorption of quinoline in 5 h, UiO-66-NH2 and UiO-66-NH2/GA presented 80.4% and 86.5%, respectively. The high adsorption observed on UiO-66-NH2/GO-NH2 was attributed to the unique electronic properties, and hydrogen bonding between the nitrogen atom of quinoline and NH2- phenyl fragment of UiO-66-NH2, and N–H of ethylenediamine. GO also offered combined strong π–π interactions on its surface, and the oxygen coverage (~ 50%) on GO within the structure is responsible for the formation of strong hydrogen bonds with quinoline. Theoretical calculation suggested that UiO-66-NH2/GO-NH2 presented a more favourable adsorption energy (− 18.584 kcal/ mol) compared to UiO-66-NH2 (− 16.549 kcal/mol) and UiO-66-NH2/GA (− 13.991 kcal/mol). These results indicate that nanocomposites have a potential application in quinoline capture technologies in the process of adsorptive denitrogenation.
        4,600원
        94.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Carbonates are inorganic ligands that are abundant in natural groundwater. They strongly influence radionuclide mobility by forming strong complexes, thereby increasing solubility and reducing soil absorption rates. We characterized the spectroscopic properties of Am(III)-carbonate species using UV-Vis absorption and time-resolved laser-induced fluorescence spectroscopy. The deconvoluted absorption spectra of aqueous Am(CO3)2 − and Am(CO3)3 3− species were identified at redshifted positions with lower molar absorption coefficients compared to the absorption spectrum of aqua Am3+. The luminescence spectrum of Am(CO3)3 3− was red-shifted from 688 nm for Am3+ to 695 nm with enhanced intensity and an extended lifetime. Colloidal Am(III)-carbonate compounds exhibited absorption at approximately 506 nm but had non-luminescent properties. Slow formation of colloidal particles was monitored based on the absorption spectral changes over the sample aging time. The experimental results showed that the solubility of Am(III) in carbonate solutions was higher than the predicted values from the thermodynamic constants in OECD-NEA reviews. These results emphasize the importance of kinetic parameters as well as thermodynamic constants to predict radionuclide migration. The identified spectroscopic properties of Am(III)-carbonate species enable monitoring time-dependent species evolution in addition to determining the thermodynamics of Am(III) in carbonate systems.
        4,800원
        95.
        2022.12 구독 인증기관 무료, 개인회원 유료
        L-asparaginase (ASNase) is a therapeutic enzyme used to treat acute lymphoblastic leukemia. Currently, the most widely used ASNases are originated from bacteria. However, owing to the adverse effects of bacterial ASNases, new resources for ASNase production should be explored. Fungal enzymes are considered efficient and compatible resources of natural products for diverse applications. In particular, fungal species belonging to the genus Trichoderma are well-known producers of several commercial enzymes including cellulase, chitinase, and xylanase. However, enzyme production by marine-derived Trichoderma spp. remains to be elucidated. While screening for extracellular ASNase-producing fungi from marine environments, we found four strains showing extracellular ASNase activity. Based on the morphological and phylogenetic analyses using sequences of translation elongation factor 1-alpha (tef1α), the Trichoderma isolates were identified as T. afroharzianum, T. asperellem, T. citrinoviride, and Trichoderma sp. 1. All four strains showed different ASNase activities depending on the carbon sources. T. asperellem MABIK FU00000795 showed the highest ASNase value with lactose as a carbon source. Based on our findings, we propose that marine-derived Trichoderma spp. are potential candidates for novel ASNase production.
        4,000원
        96.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        N-doped Na2Ti6O13@TiO2 (denoted as N-NTO@TiO2) composites are successfully synthesized using a simple two-step process: 1) ball-milling of TiO2 with Na2CO3 followed by heat treatment at 900oC; 2) mixing of the prepared Na2Ti6O13 with titanium isopropoxide and calcining with urea at 500oC. The prepared composites are characterized using XRD, SEM, TEM, FTIR, and BET. The N-NTO@TiO2 composites exhibit well-defined crystalline and anatase TiO2 with exposed {101} facets on the external surface. Moreover, dopant N atoms are uniformly distributed over a relatively large area in the lattice of the composites. Under visible light irradiation, ~51% of the aqueous methylene blue is photodegraded by N-NTO@TiO2 composites, which is higher than the values shown by other samples because of the coupling effects of the hybridization of NTO and TiO2, N-doping, and presence of anatase TiO2 with exposed {101} facets.
        4,000원
        97.
        2022.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This study aimed to isolate and identify the new strains which can be utilized in fermentation process for the production of functional materials. Isolation of the new microorganism in wood vinegar, natural liquid material generated from the carbonization of various trees was studied. Marine agar medium was used for the isolation of halo-tolerant bacteria. Using a sterilized toothpick, transfer same shape colonies to agar plates and continuous cultivation of colonies at 37℃ for several days, 2 colonies were isolated. Through the 16S-based ID service, isolated strains were identified as Cytobacillus species. Verifying the industrial values of the two isolated strains, the productivities of various enzymes such as amylase, lipase, and protease were confirmed. As a result, isolated 2 strains showed amylase and protease activities which means the possibility of applying to biological processes in the food and cosmetic industries.
        4,000원
        98.
        2022.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The physicochemical properties of the emulsions prepared with four different proteins (pea protein isolate, whey protein isolate, soy protein concentrate, and soy protein isolate) were characterized in terms of particle size, rheological property, and freeze-thaw stability, while the feasibility of the protein-stabilized emulsions as a fat replacer was evaluated. Confocal laser scanning microscopic analysis showed that O/W emulsions were successfully prepared with all the proteins; however, the smallest particle size and excellent syneresis were observed in the WPI-stabilized emulsions. The use of WPI-stabilized emulsions as an alternative for shortening up to 50% level did not lead to differences in the muffin batters’ specific gravity and viscoelastic properties. After baking, the substitution of shortening with the WPI emulsions at up to 50% by weight did not significantly affect the muffins’ specific volume and texture characteristics.
        4,000원
        1 2 3 4 5