검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 91

        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sulfur and nitrogen co-doped carbon dots (NSCDs) were quickly synthesized by the microwave-assisted method from triammonium citrate and thiourea. NSCDs showed a quantum yield of 11.5% with excitation and emission bands at 355 and 432 nm, respectively. Also, a fluorescence quenching was observed in the presence of Pb(II) ions, and the as-synthesized CDs were used as a sensitive probe for detecting Pb(II) in water and food samples. The results showed the optimal conditions for Pb(II) determination were CDs concentration of 0.02 mg mL− 1 at pH 6.0–7.0 and an incubation time of 20 min. The relative fluorescence intensity of NSCDs was proportional to Pb(II) concentrations in the range of 0.029–2.40 and 2.40–14.4 μmol L− 1 with a correlation coefficient (R2) of 0.998 and 0.955, respectively, and a detection limit of 9.2 × 10– 3 μmol L− 1. Responses were highly repeatable, with a standard deviation below 3.5%. The suggested method demonstrates the potential of a green, fast, and low-cost approach for Pb(II) determination in water, tea, and rice samples with satisfying results.
        4,000원
        3.
        2023.10 구독 인증기관·개인회원 무료
        Stilbene-based fluorescent brighteners (FB) have been shown to enhance insecticidal activities of entomopathogenic viruses but little is known its effect on entomopathogenic bacteria. We investigated the effect of two FBs (FB 28 and FB 71) on the insecticidal activity of B. thuringiensis var. kurstaki (Btk) as well as the Lymantria dispar multiple nuclear polyhedrosis virus (LdMNPV) in Lymantria dispar asiatica. FB 28 increased the mortality at the combination with low concentration (1.6×102 IU/ml) of Btk, but FB 71 slightly reduced the mortality with middle and high concentrations (1.6×103 and 1.6×104 IU/ml) of Btk in comparison to Btk alone. Both FB 28 and FB 71 increased mortality in combination with LdMNPV at all concentrations (3×102, 3×104, and 3×106 POBs/ml) compared to LdMNPV alone. Our findings suggest that FBs enhanced pathogenic activities but depend on chemical nature of FBs.
        4.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The rapid synthesis techniques and interesting multidisciplinary applications make carbon nanodots (CNDs) stand out from semiconductor quantum dots. Moreover, CNDs derived from green precursors have gained more importance beyond chemically derived CNDs due to sustainable synthesis opportunities. However, the presence of molecular impurities or intermediates or fluorophores was neglected during the entire process. Herein, we illustrate the sustainable synthesis of CNDs from Hemigraphis alternata plant leaves with extended carbonization procedure (3 and 9 min) along with simultaneous ethylene glycol and diethyl ether solvent treatment method for the successful removal of interfering fluorophores. To unravel the distinction between purified CNDs (P-CNDs) and organic fluorescent carbon nanostructures (org-FCNs), we carried out photophysical, structural, and morphological studies. A quantum yield (QY) of 69 and 42% was observed for crude org-FCNs, and crude P-CNDs; however after purification, QY of 1% and absence of one component from the fluorescent decays curve suggest the removal of fluorophores. Further, HR-TEM and DLS studies showed the quasi-spherical amorphous particles having < 10 nm particle size for P-CNDs. Besides, in vitro biocompatibility investigation and cellular uptake assay (1–100 μg/mL) against the MDA-MB 468 cell lines proves the ≥ 95% cell viability and good internalization for both org-FCNs and P-CNDs. Hence, our study shows the presence of fluorophore impurities in plant-derived CNDs, the removal and resemblance in biocompatibility properties. Hence, this information can be considered during the synthesis and isolation of CNDs. Simple and effective removal of impurities to harvest pure carbon nanodots (CNDs) through solvent-based selective separation method, and revelation of the cocktail flourphores similar to biocompatible blue fluorescent CNDs were studied.
        4,900원
        8.
        2022.12 구독 인증기관 무료, 개인회원 유료
        Organisms constituting a large proportion of marine ecosystems, ranging from bacteria to fish, exhibit fluorescence and bioluminescence. A variety of marine organisms utilize these biochemically generated light sources for feeding, reproduction, communication, and defense. Since the discovery of green fluorescent protein and the luciferin-luciferase system more than a century ago, numerous studies have been conducted to characterize their function and regulatory mechanism. The unique properties of fluorescent and bioluminescent proteins offer great potential for their use in a broad range of applications. This short review briefly describes the functions and characteristics of fluorescent and bioluminescent proteins, in addition to summarizing the recent status of their applications.
        4,300원
        9.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Food toxins are regarded as a major source of health risks, serious illnesses susceptible to even death. These dangerous pathogens may lead to significant economic impact worldwide. The food production chain undergoes different stages like harvesting, processing, storage, packaging, distribution, and lastly preparation, and consumption. Therefore, each step is susceptible to risks of environmental contamination. Nowadays, the carbon quantum dots (CDs) are regarded as one of the most widely used hybrid carbon nanomaterials due to their different magical physical and chemical properties. The CDs have a size below 10 nm and show the fluorescent property. The CDs find vast applications in different fields like sensing, food safety, drug delivery, bioimaging, catalyst, energy conversion, etc. Compared to other available methods, the fluorescence detection techniques have low cost, easy handling, and safe operating system. There is a need for a review to compile the fluorescence properties of carbon nanodots used to detect food pathogens. This brief review is addressed in that direction and mostly focused on the synthesis of carbon dots-based fluorescence sensors for detecting pathogens and toxins in foods and beverages. The detailed mechanisms and origin of fluorescence properties of carbon quantum dots are also highlighted herewith.
        5,400원
        10.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fluorescent carbon nano-materials with quantum confinement and edge effects have recently piqued attention in a variety of applications, including biological imaging, drug delivery, optoelectronics and sensing. These nano-materials can be synthesized from a variety of carbon-based precursors using both top-down and bottom-up methods. Coal and its derivatives typically include a vast crystalline network and condensed aromatic ring cluster, which can be easily exfoliated by chemical, electrochemical, or physical processes to produce nano-materials. As a result, they are regarded as a low-cost, abundant and efficient carbon source for the fabrication of high-yield nano-materials. Nano-materials synthesized from coal-based precursors have outstanding fluorescence, photostability, biocompatibility and low toxicity, among other properties. Their properties in optical sensors, LED devices, bio-imaging, and photo and electro-catalyst applications have already been investigated. In this review, we have highlighted current developments in the synthesis, structural properties and fluorescence properties of nano-materials synthesized from coal-based precursors.
        7,800원
        11.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Herein, a facile bottom–up approach for producing nitrogen-doped carbon quantum dots (N-CQDs) was carried out by the hydrothermal treatment of microcrystalline cellulose, in the presence of different nitrogen sources (blank/urea/ammonia water/ethanediamine(EDA)/Hexamethylenetetramine). The result showed that the fluorescence intensity and quantum yields (QYs) of N-CQDs with different nitrogen sources are all higher than that without nitrogen source. Compared with the other three nitrogen sources, N-CQDs prepared by EDA not only have the highest fluorescence intensity but also the largest QYs of 51.39%. Therefore, EDA was chosen as the nitrogen source to prepare N-CQDs. The obtained N-CQDs are uniform spherical particles with a diameter of 2.76 nm. The N-CQDs also exhibit excitation-dependent and long-wave emission properties. The emission range of N-CQDs is 470–540 nm. Moreover, N-CQDs as fluorescent agents successfully acted on purple LEDs (λem = 365 nm) to achieve white LEDs light emission. At the same time, a fluorescent thin layer chromatography plate was successfully prepared using N-CQDs, silica gel G and Sodium carboxymethylcellulose as raw materials. The separation trajectory of mixed sample of Sudan red III and kerosene on the fluorescent TLC plate is obviously clearer than that of the TLC plate.
        4,000원
        12.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An extract of fresh guava leaves (Psidium guajava) was used as a green carbon precursor to fabricate blue fluorescent carbon quantum dots (GCQDs) by hydrothermal process. The GCQDs show bright blue fluorescence emission under UV light with an excitation wavelength of 350 nm and emission at 450 nm. The physical structure of GCQDs was characterized by Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), High-resolution transmission electron microscope (HR-TEM) and atomic force microscopy (AFM). GCQDs 80 μg inhibited the growth of waterborne pathogens Escherichia coli and Salmonella typhi. We also investigated the catalytic activity of the GCQDs on the removal of two azo dyes, namely Congo red and bromophenol blue, with and without NaBH4. The GCQDs showed an excellent reduction of color intensity of both dyes without NaBH4 within 30 min of treatment.
        4,200원
        13.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Highly luminescent carbon quantum dots (CQDs) are developed as fluorescent probes for selective detection of the heavy-ion Fe3+, where the CQDs exhibit excellent nontoxicity, functionalizability, sensitivity, and selectivity. Biomass-based CQDs and nitrogen-doped CQDs (N-CQDs) are synthesized for the selective detection of Fe3+ by using H2O2 as an oxidant and polyetherimide (PEI) as a nitrogen precursor by a green hydrothermal synthesis method. The prepared CQDs and N-CQDs exhibit an elliptical morphology and with an average particle size of 7 and 4 nm, respectively, and emit blue photoluminescence at 445 and 468 nm under excitation at 367 and 343 nm, respectively. The CQDs and N-CQDs exhibit good water solubility because of the abundant hydroxyl and carboxyl/carbonyl groups and graphic/pyrrolic/pyridinic nitrogen on the surfaces, giving rise to a quantum yield of about 24.2% and 30.7%, respectively. Notably, the Matrimony vine-PEI-based CQDs exhibit excellent Fe3+ selectivity and sensitivity relative to the Matrimony vine-based CQDs due to complexation of the numerous phenolic hydroxyl groups and nitrogen-containing groups with Fe3+, leading to increased fluorescence quenching, which greatly improves the sensitivity of detection. The minimum detection limit was 2.22 μmol L− 1 with a complexation constant of 44.7.
        4,000원
        15.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we report a controlled one-pot green synthesis of multiwalled carbon nanotubes (MWCNTs) via pyrolysis of sustainable agriculture waste (chickpea peel) at 400 °C in aqueous medium. These MWCNTs demonstrated 7.0 nm diameter, 0.28 nm graphitic spacing with carbonyl, hydroxyl, and carboxylic acid functionality. The D band (presence of sp3 defects) and G band ( E2g mode of graphite) at 1350 cm−1 and 1580 cm−1 originated in Raman spectrum, respectively. The prepared MWCNTs showed blue fluorescence with 10% fluorescence quantum yield in aqueous medium. The MWCNTs showed triple exponential decay characteristics with an average fluorescence lifetime of 4.7 ns. The synthesized MWCNTs revealed a consistent fluorescence in the cytoplasm of 22RV1 human prostate carcinoma cell line without exerting any sign of cytotoxicity. The MWCNTs also exhibited remarkable cytocompatibility in human immortalized prostate epithelial RWPE1 cells.
        4,000원
        18.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fluorescent nanoparticles are characterized by their unique properties such as luminescence, optical transparency, and sensitivity to various chemical environments. For example, semiconductor nanocrystals (quantum dots), which are nanophosphors doped with transition metal or rare earth ions, can be classified as fluorescent nanoparticles. Tuning their optical and physico-chemical properties can be carried out by considering and taking advantage of nanoscale effects. For instance, quantum confinement causes a much higher fluorescence with nanoparticles than with their bulk counterparts. Recently, various types of fluorescent nanoparticles have been synthesized to extend their applications to other fields. In this study, State-of-the-art fluorescent nanoparticles are reviewed with emphasis on their analytical and anti-counterfeiting applications and synthesis processes. Moreover, the fundamental principles behind the exceptional properties of fluorescent nanoparticles are discussed.
        4,000원
        19.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new discrete bis-dithiolene complex, [ PPh4]2[Zn(DMED)2] (1; DMED = 1,2-dicarbomethoxy-1,2-dithiolate) with sulfurbased radical character was synthesized and structurally characterized. Complex 1 is stable and exhibits a square planar geometry around the zinc metal. 1 forms nanospheres through a one-pot water-induced self-assembly in a mixture of solvents (acetonitrile–water). These nanospheres were further decorated with water-soluble carbon nanotubes (wsCNTs) through hydrogen bonding between the peripheral –COOCH3 groups of 1 and surfacial carboxyl groups of wsCNTs to assemble into a spherical nanocomposite. The as-prepared nanocomposite showed fluorescence emissions in visible region due to the separation of energy states of the nanospheres assisted by wsCNTs, suggesting the future possibilities of these new materials for use in biomedical application.
        4,000원
        20.
        2018.11 구독 인증기관·개인회원 무료
        New type of White-Light Emitting Diode (WOLED) that emits three primary colors of red, green and blue has been demonstrated. WOLED is properly laid out with emitting layers so that all three wavelengths of light can be emitted by using fit energy level, and the organic functional layer named white balanced layer (WBL) is introduced. As for the material used as WBL, the experiment used NPB that has electron blocking effect with its large LUMO value. The color purity of such WOLED can be easily adjusted through the adjustment of the number of electron carriers injected into light emitting layer. In this of study, color coordinate was (0.341, 0.424) and light emitting efficiency was 16.5 cd/A at current density 10 mA/cm2, so the WOLED demonstrated highly efficient characteristics of over commercial level.
        1 2 3 4 5