UV and O3 are materials used in the water treatment process, and many studies have been reported to remove organic matters, contaminants, and microorganisms. In this study, we were investigated effects of Chirnomidae (Chironomus flaviplumus, Chironomus riparius), which are contamination indicator species to exposure UV and O3 for the survival rate, body color change and gene expression response. The survival rate of C. flaviplumus exposed to UV decreased to about 70% after 24 hours, and C. riparius about 50%. There was no change in the survival rate of C. flaviplumus exposed to O3, and C. riparius decreased to 95% after 10 minutes of exposure, but there was no change during the subsequent exposure time. In addition, UV and O3 exposure to the two species in body color faded in a time-dependent. In the HSP70 gene expression, C. riparius showed an increase in expression after UV exposure compared to the control group, and a significant difference was shown 12 hours after exposure (P<0.05). C. flaviplumus exposed to O3 showed a relatively low expression compared to the control group, and showed a significant difference at 10 minutes and 1 hour after exposure (P<0.05). These results reported the ecotoxicological effects on Chironomidae according to UV and O3 exposure. Therefore, the results of this study can be used as basic data to understand the effects of UV and O3, which are disinfectants used in water treatment plants, on Chirnomidae entering plants. Key words: Chironomus flaviplumus, Chironomus riparius, UV, O3, acute toxicity, survival
돌기해삼 Apostichopus japonicus는 주요 양식 대상 무척추동물로서 우리나라 연안 해역에 서 식하고 있다. 본 연구는 방류 방법에 따른 단기간의 생리학적 스트레스 정도를 평가하기 위하 여 heat shock protein 90 (HSP90) 유전자의 발현 변화를 실시간 정량적 중합효소연쇄반응법 으로 조사하였다. 어린 돌기해삼을 비닐봉지에 산소 포장하여 30분간 수송하거나 방류 해역의 간조기에 1시간 공기 중에 노출된 실험군의 HSP90 유전자 발현은 대조군의 HSP90 유전자 발현에 비하여 통계학적으로 유의미하게 증가하였다(수송 후 실험군 p=0.001; 간조기 실험군 p=0.032). 어린 돌기해삼을 방류 후 6시간까지 분석한 결과, 선상에서 씨뿌림 방식으로 방류된 6시간째의 개체 및 호스를 통과하여 수중으로 방류된 2~6시간째의 HSP90 유전자 발현율은 대 조군에 비하여 약간 감소하는 경향을 보였다(씨뿌림 실험군 p=0.069; 호스 방류군 p=0.093). 한 편, 잠수부에 의해 수중에서 방류된 어린 돌기해삼은 방류 후 시간이 경과할수록 HSP90 유전 자 발현율은 증가하는 패턴이 관찰되었다(p=0.061). 이상의 결과는 방류된 어린 돌기해삼의 단기간 스트레스 반응 연구와 효과적인 방류 방법의 개발에 HSP90 유전자 발현이 유용하게 사용될 수 있음을 시사한다.
To understand the role of small heat shock protein (sHSPs) in rice plant response to various stresses such as the heat and oxidative stresses, a cDNA encoding a 24.1 kDa mitochondrial small HSP (Oshsp24.1) was isolated from rice by rapid amplification of cDNA ends (RACE) PCR. The deduced amino acid sequence shows very high similarity with other plant small HSPs. DNA gel blot analysis suggests that the rice genome contains more than one copy of Oshsp24.1. High level of expression of Oshsp24.1 transcript was observed in rice seedlings in response to heat, methyl viologen, hydrogen peroxide, ozone, salt and heavy metal stresses. Recombinant OsHSP24.1 protein was produced in E. coli cells for biochemical assay. The protein formed oligomeric complex when incubated with Sulfo-EGS (ethylene glycol bis (succinimidyl succinate)). Our results shows that Oshsp24.1 has an important role in abiotic stress response and have potential for developing stress-tolerant plants.
Heat shock proteins (HSPs) are highly conserved cellular proteins that contribute to adaptive responses of organisms to a variety of stressors. In response to stressors, cellular levels of HSPs are increased and play critical roles in protein stability, folding and molecular trafficking. The mRNA expression pattern of two well-known heat shock protein transcripts, HSP70 and HSP90 were studied in two tissues of nerve ganglia, cerebral ganglion and pleuropedal ganglion of Pacific abalone (Haliotis discus hannai). It was observed that both HSP70 and HSP90 transcripts were upregulated under heat stress in both ganglion tissues. Expression level of HSP70 was found higher than HSP90 in both ganglia whereas cerebral ganglion showed higher expression than pleuropedal ganglion. The HSP70 and HSP90 showed higher expression at Day-1 after exposed to heat stress, later decreased at Day-3 and Day-7 onwards. The present result suggested that HSP70 and HSP90 synthesize in nerve ganglion tissues and may provide efficient protection from stress.
오존은 수돗물 정수장에서 이용되는 소독 물질로 미세오염 물질들을 비롯해서 박테리아나 병원성 미생물체를 효과적으로 제거하는 것으로 많은 연구가 보고되어 있다. 본 연 구에서는 실내 사육 중인 붉은 체색을 지닌 Glyptotendipes tokunagai를 대상으로 서로 다른 농도의 오존 노출에 따른 영향을 파악하기 위해 치사율, 체색 변화와 heat shock protein 70 (HSP70) 유전자 발현을 측정하였다. 오존에 노출 된 G. tokunagai에서 농도-시간 의존적으로 치사율 증가가 관찰되었다. 또한 체색 변화는 오존 농도에 따라 붉은색의 체색이 체절마다 엷어지며 탈색되고 경직되는 현상이 보였다. HSP70 유전자 발현은 저농도인 0.2~0.5 ppm에서 노출 10분과 20분에 유의한 수준으로 높게 나타났으나 (P<0.05), 30 분 노출 후에는 발현량이 감소하는 경향을 보였다. 생리적으로 저산소층에 대해 적응능력이 뛰어난 깔따구 경우에도 오존은 매우 강력한 치사 효과를 유발하여 30분 노출 후 경직과 헤모글로빈 파괴로 인한 탈색이 유발되는 것을 보여주었다. 따라서 본 결과는 수돗물 정수장에서 병원성 미생물을 제거하는 데 사용되는 오존이 수생물에 주는 영향성을 파악하는 기초자료로서 활용될 수 있을 것이다.
참다슬기 아가미 조직으로부터 heat shock protein 70 유전자를 분리 · 동정하였다. 참다슬기 HSP70 cDNA의 open reading frame (ORF)는 1,917 bp로 639개의 아미노산을 암호화하여 분자 량은 약 70 kDa으로 예측되었다. 생물정보학 배열분석에 의해 HSP 유전자 기능과 관여되어 있는 3가지 주요 signature motifs와 보존된 도메인을 확인하였다. 계통학적 분석을 통하여 참 다슬기 HSP70 유전자는 왕우렁이 Pomacea canaliculate와 같은 클러스트에 포함된다는 사실을 확인하였다. 수온 및 염분 변화에 따라, 참다슬기 HSP70 mRNA 유전자 레벨은 유의적으로 증 가하였으며(p < 0.05), 이는 외부자극요인을 파악할 있는 분자생물학적 마커로서 활용될 수 있 을 것으로 사료된다.
This study was performed to evaluate the effect of heat stress on the status of physiological responses, blood parameter, serum T3 and cortisol, and heat shock proteins (HSP 27, 70, and 90) of Hanwoo cattle. Six Hanwoo steers (242.8 ± 7.2 kg of BW) were housed in the climate-controlled respiration chambers. The experiment consisted of 7 days (control; 0 day) at thermoneutral (air temperature (Ta) of 15oC and relative humidity (RH) of 60%; temperature-humidity index (THI) = 64), and by 3 and 6 days (treatment groups) at heat stress (Ta of 35oC and RH of 60%; THI = 87). Body temperature of each parts (frank, rump, perineum and foot) and rectal temperature elevated in heat stress groups (3 days and 6 days) than the control group (0 day). Respiration rates increased in 3 days and 6 days (88.5 ± 0.96 bpm and 86.3 ± 0.63 bpm, respectively) from 0 days (39.5 ± 0.65 bpm). Feed intake significantly decreased in heat stress groups (3 days and 6 days, 3.7 ± 0.14 kg and 4.0 ± 0.15 kg, respectively) than the control group (0 day, 5.0 ± 0.00 kg). In addition, final BW significantly decreased in heat stress groups (3 days and 6 days, 211.8 ± 4.75 kg and 215.5 ± 3.50 kg, respectively) than the control group (0 day, 240.0 ± 25.00 kg). However, heat stress has no significant effect on blood parameter, serum T3 and cortisol. Nevertheless, heat stress increased HSPs mRNA expression in liver tissue, and serum concentration of HSPs. Despite Hanwoo cattle may have high adaptive ability to heat stress, our results suggested that heat stress directly effect on body temperature and respiration rate as well as serum and tissue HSPs. Therefore, we are recommended that HSPs could be the most appropriate indicators of Hanwoo cattle response to heat stress.
The sweetpotato whitefly Bemisia tabaci is one of the most serious pests in the greenhouse. They can infest variouscrop plants even in high warm greenhouse condition in summer. To understand the effect of heat acclimation ability ofB. tabaci, mortality was determined at various temperature conditions of the greenhouse. Adult whiteflies survived evenin 63°C in tomato greenhouse. The median lethal temperature (LT50) of the greenhouse colony was 59.9°C however LT50of the lab colony was 47.6°C. The relative expression level of heat shock proteins (hsp23, hsp70 and hsp90) were significantlylower in the greenhouse colony compare to the lab colony. This result suggests B. tabaci has very high thermal adaptability(acclimation) and its mechanism is associated with heat shock protein system.
We investigate that the impact of freshwater organism exposed to the salinity environment by the frequent rainfall following climate change. To evaluate the stress response following salinity exposure, we assessed the survival rate, molting success rate, the developmental period and mouthpart deformities in Chironomus riparius. In addition, we measured the molecular responses of biomarker gene, gene expression of heat shock protein 70 (HSP70) in C. riparius exposed to salinity after 96 hour. The C. riparius survival rates were showed on time dependent manner and not observed survival organisms above 15 psu at day 4. The pupation and emergence of C. riparius were not seen above 15 psu, and the molting success rate was less than 20% at 10 psu. The developmental retardation of C. riparius was well observed in the pupation and emergence period and was delayed by 4 days at 10 psu compared to the control and 5 psu. The mouthpart deformities after salinity exposure at 96 or 72 hour were observed at 10 psu and 15 psu. The expression of C. riparius HSP70 level was significantly increased exposure to 5 psu and 10 psu. Thus, salinity has been caused to be various ecotoxicological and molecular stress responses on freshwater organisms similar to harmful substances such as EDCs and so on.
본 연구는 열 스트레스 하에서 오리사료 내 대사에너지(ME) 수준이 오리의 간, 십이지장 융 모, 미생물, 유전자 조절에 미치는 영향을 조사하였다. 총 240마리의 육용 오리 채리밸리(Anas platyrhynchos)를 4처리구로 완전임의배치 한 후 42일 동안 사육하였다. 처리구는 ME 2900 kcal/kg, ME 3000 kcal/kg, ME 3100 kcal/kg 및 ME 3200 kcal/kg로 구분하였다. 간 조직은 처리구 사이의 차이가 없었고, 십이지장 융모 및 창자샘 길이는 ME 3000과 비교할 때 2900은 10.58% 감소하였으나 3100, 3200과의 사이에 차이는 없었다. 맹장 Latobacillus는 ME 3000과 비교할 때 2900은 9.47% 감 소하였으나 3100, 3200은 각각 2.52, 3.24% 증가하였다. Total aerobic bacteria, E. coli, Coliform bacteria는 ME 3000과 비교할 때 2900은 증가하였으나 3100, 3200은 차이가 나타나지 않았다. 간에서 HSP (heat shock proteins)-mRNA 중 HSP 90-α는 ME 3000과 비교할 때 2900은 48.60% 감소하였 으며 3100, 3200은 차이가 없거나 증가하였다.
The sweetpotato whitefly Bemisia tabaci is a serious pest and virus vector of many crops. To understand thermal tolerance of B. tabaci at molecular level, effects of rapid and acclimated thermal stress were analyzed by measuring mRNA levels of two heat shock proteins (hsp), hsp23 and hsp90, of B. tabaci using quantitative real-time RT-PCR. Mortality of adult whiteflies were 65.5% by 45°C for 1 h but 100% by 50°C for 1 h. However, mortality by subsequent exposures to 35°C for 1 h then 45°C for 1 h was 43.3%. Comparison between rapid and acclimated heat shock treatments showed that different patterns between hsp23 and hsp90 levels. At acclimated condition, hsp90 was higher but hsp23 was lower than rapid heat shock. The results suggest that the heat acclimation response is possibly advantageous to whiteflies that are often exposed to drastic temperature fluctuations.
This study was conducted to investigate exact life cycle and Parnassius bremeri’s response to heat shock stress from 2012 to 2016 in Holoce Ecosystem Conservation Research Institution through captive breeding. About 16 days(15.7±0.3days) later embryo in eggs were developed as pharate first instar and the eggs of Parnassius bremeri possessed the ability to undergo an extended aestivation hosting a fully developed pharate 1st instar larvae within the chorion. Pharate 1st instar in egg hatched from late in November to early in December about 194 days(194.3±1.1days) later. All pharate 1st instar in egg and out of egg survived at 25℃, 35℃. In case of 45℃ survival rate of pharate 1st instar in an egg (93.8±6.3%) was significantly higher than those (22.2±10%) of pharate 1st instar out of an egg. All was dead at 47.5, 50, 52.5 and 55℃.
Environmental changes exert harmful effects on organisms inhabiting coastal regions. These changes are also associated with reduced production in aquaculture farms. In this study, we investigated internal and external responses of two Bivalvia species (Crassostrea gigas and Mytilus galloprovincialis) in Gamak Bay under stressful environmental conditions in aquaculture farms. We investigated external responses such as weight, size, and environment exposure time, and analyzed the expression of the HSP70 gene. C. gigas HSP70 gene expression level was significantly high in the C3 aquaculture farm site, but the weight and size of C. gigas were high in the C2 aquaculture farm site. The response of C. gigas HSP70 mRNA was associated with the environmental exposure time in each aquaculture farm. Expression of M. galloprovincialis HSP70 gene was found to be significantly higher in the M2 aquaculture farm site than in the M1 site, whereas the weight of M. galloprovincialis was observed to be higher in the M1 site. The size and environmental exposure time of M. galloprovincialis were similar between M1 and M2 sites. In addition, HSP70 sequences of C. gigas and M. galloprovincialis showed high similarity with that of another marine species. According to our results, there were differences in internal responses following environmental stress in aquaculture farms, with respect to HSP70 gene expression. The results suggest that the HSP70 gene is a useful molecular indicator for monitoring stress responses in Bivalvia species in the field.
꿀벌(honey bee)은 대표적인 화분매개곤충으로 산업적 가치가 높을 뿐만 아니라 생태계에서도 중요한 위치를 차지한다. 2006년 이후 꿀벌군집붕괴현상(CCD)으로 인해 수많은 꿀벌들이 죽었지만 아직까지 그 정확한 원인이 밝혀지지 않아 여전히 꿀벌들의 생존을 위협하고 있다. 이와 더불어 최근 기후변화에 의한 불확실한 환경조건 또한 꿀벌을 위협하는 요소들 중 하나이다. 본 실험에서는 이러한 외부 환경 조건에 대한 꿀벌의 생리적인 반응을 측정하기 위해서 heat shock protein (hsp) 유전자를 이용하였다. 꿀벌의 유전체 분석을 통하여 36개의 hsp 유전자를 선발하였다. 이들 중 hsp40, hsp70, grp78, hsp90를 선정하여 quantitative real-time PCR를 통해 발현량을 분석하였다. 고온 처리(40, 45, 50°C)를 했을 때 45°C에서 hsp 발현량이 가장 높았다. 그리고 조직별(지방체, 중장, 날개 근육)로는 날개근육에서 발현량이 가장 높았다. 적화제 섭식 시 hsp 발현량이 증가하였지만, 살충제 이미다클로프리드 섭식 시는 hsp 발현량이 감소하였다. 즉, 외부 스트레스에 대해 꿀벌 hsp 유전자들의 발현이 다양한 패턴을 나타냈다. 이를 바탕으로 스트레스에 반응하는 꿀벌의 생리에 대해 더 폭넓은 이해가 있을 것으로 예상된다.
A novel oxidant fumigation (NOF) is a commercial bleaching and disinfection agent. Recent study indicates its insecticidal activity. However, its exact mode of action to kill insects is not known. This study sets up a hypothesis that reactive oxygen species released from NOF is a main factor to kill insects. Plodia interpunctella is a lepidopteran insect pest infesting various stored grains. Both larvae and adults were susceptive to NOF. To test the hypothesis, we needed to identify antioxidant genes in P. interpunctella. Superoxide dismutase (SOD) and thioredoxin-peroxidase (Trx) were identified from P. interpunctella EST library using ortholog sequences of Bombyx mori. Both SOD and Trx were expressed in larvae of P. interpunctella expecially against oxidative stress induced by bacterial challenge. The bacterial challenge also induced some heat shock protein (HSP) genes. Similarly, different doses of NOF significantly induced both SOD and Trx genes. There results suggest that NOF at sublethal doses releases reactive oxygen species, which may be detoxified by the antioxidant activities of SOD and Trx of P. interpunctella.
Silkworm transgenesis is now a routine method leading to a satisfactory yield of transformed animals and the reliable expression of transgenes during multiple successive generations. However, the screening of G1 transgenic individuals from numerous progeny has proved to be difficult and time-consuming work. Previously, we characterized the promoter of heat shock protein 70 from Bombyx mori (bHsp70), which is ubiquitously expressed in all tissues and developmental stages. To investigate the utilization of the bHsp70 promoter to screen transgenic individuals, the EGFP marker gene was inserted into the piggyBac vector under the control of the bHsp70 promoter. Mixtures of the donor and helper vectors were micro-injected into 3,060 eggs of bivoltine silkworms (Keomokjam). EGFP fluorescence was observed in 17 broods of transgenic silkworms under a florescence stereomicroscope. Interestingly, this fluorescent marker protein was detected not only in parts of the embryo segments on the seventh day of the G1 embryonic developmental stage but it was also detected in a part of the body of G1 hatched larvae, in the middle silk gland of G1 fifth instar larvae, and in the wings of seven-day-old G1 pupae and G1 moths. Therefore, we suggest that the bHsp70 promoter can be used for the rapid and simple screening of transgenic silkworms.
Silkworm transgenesis is now a routine method leading to a satisfactory yield of transformed animals and the reliable expression of transgenes during multiple successive generations. However, the screening of G1 transgenic individuals from numerous progeny has proved to be difficult and time-consuming work. Previously, we characterized the promoter of heat shock protein 70 from Bombyx mori (bHsp70), which is ubiquitously expressed in all tissues and developmental stages. To investigate the utilization of the bHsp70 promoter to screen transgenic individuals, the EGFP marker gene was inserted into the piggyBac vector under the control of the bHsp70 promoter. Mixtures of the donor and helper vectors were micro-injected into 3,060 eggs of bivoltine silkworms (Keomokjam). EGFP fluorescence was observed in 17 broods of transgenic silkworms under a florescence stereomicroscope. Interestingly, this fluorescent marker protein was detected not only in parts of the embryo segments on the seventh day of the G1 embryonic developmental stage but it was also detected in a part of the body of G1 hatched larvae, in the middle silk gland of G1 fifth instar larvae, and in the wings of seven-day-old G1 pupae and G1 moths. Therefore, we suggest that the bHsp70 promoter can be used for the rapid and simple screening of transgenic silkworms.
We have previously investigated the proteome changes of rice leaves under heat stress (Lee et al. in Proteomics 2007a, 7:3369- 3383), wherein a group of antioxidant proteins and heat shock proteins (HSPs) were found to be regulated differently. The present study focuses on the biochemical changes and gene expression profiles of heat shock protein and antioxidant genes in rice leaves in response to heat stress (42°C) during a wide range of exposure times. The results show that hydrogen peroxide and proline contents increased significantly, suggesting an oxidative burst and osmotic imbalance under heat stress. The mRNA levels of chaperone 60, HSP70, HSP100, chloroplastic HSP26, and mitochondrial small HSP responded rapidly and showed maximum expression after 0.5 or 2 h under heat stress. Transcript levels of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and Cu-Zn superoxide dismutase (Cu-Zn SOD) showed a rapid and marked accumulation upon heat stress. While prolonged exposure to heat stress resulted in increased transcript levels of monodehydroascorbate reductase, peroxidase, glyoxalase 1, glutathione reductase, thioredoxin peroxidase, 2-Cysteine peroxiredoxin, and nucleoside diphosphate kinase 1, while the transcription of catalase was suppressed. Consistent with their changes in gene expression, the enzyme activities of APX and DHAR also increased significantly following exposure to heat stress. These results suggest that oxidative stress is usually caused by heat stress, and plants apply complex HSP- and antioxidant-mediated defense mechanisms to cope with heat stress.